
SQLBase
Advanced Topics Guide
20-2119-1002

Gupta

ay,

d
 and
ed

ca

ss

r is a

d
Trademarks
Centura, Centura Ranger, the Centura logo, Centura Web Developer, Gupta, the
logo, Gupta Powered, the Gupta Powered logo, Fast Facts, Object Nationalizer,
Quest, Quest/Web, QuickObjects, SQL/API, SQLBase, SQLConsole, SQLGatew
SQLHost, SQLNetwork, SQLRouter, SQLTalk, and Team Object Manager are
trademarks of Centura Software Corporation and may be registered in the Unite
States of America and/or other countries. SQLWindows is a registered trademark
TeamWindows, ReportWindows and EditWindows are trademarks exclusively us
and licensed by Centura Software Corporation.

Microsoft, Win32, Windows, Windows NT and Visual Basic are either registered
trademarks or trademarks of Microsoft Corporation in the United States of Ameri
and/or other countries.

IBM and IBM PC are registered trademarks of International Business Machines
Corporation. DB2/ OS/2, and Token Ring are trademarks of International Busine
Machines.

NetWare and Novell are registered trademarks of Novell, Inc. Netware Requeste
trademark of Novell, Inc.

Java is a trademark of Sun Microsystems Inc.

SQL Designs and the SQL Designs logo are trademarks of SQL Designs, Inc.

All other product or service names mentioned herein are trademarks or registere
trademarks of their respective owners.

Copyright
Copyright 1997 by Centura Software Corporation. All rights reserved.
Advanced Topics Guide
20-2119-1002
November 1997

re
 were
sed to
ams
ok the

of

ur
d the

 any
 their

tand
es

t. We
th
r

st

Base
 win

Advanced Topics Guide
Foreword

In the early days of relational databases there was a certain purist mentality whe
relational databases were compared to hierarchical and network databases, and
viewed as impure because users had detailed knowledge of the data structures u
store data. Often, users would alter the design and implementation of their progr
to take into account the structure of data storage. Relational database vendors to
high ground in developing the concept that it was the RDBMS’s responsibility to
efficiently manage the storage and retrieval of data, and it was the responsibility
the application designer to provide the logical design and schema of the data.

Coming from this purist background I have often resisted the notion of allowing o
users to know about the internals of the database. However, time, experience, an
realities of relational technology have taught me that a perfect world where data
storage and retrieval is optimally handled by the RDBMS does not exist for us or
other RDBMS vendor. Our customer base has been very clear in communicating
need to know more and more about the internals of SQLBase. Our close
communication with customers and consultants have helped us to better unders
the need and the value of clearly explaining and documenting how SQLBase do
what it does.

With version 6 of SQLBase, we have taken the opposite position on exposing the
internals of SQLBase. With SQLConsole 2.0, our customers can learn almost as
much about the internal workings of SQLBase as the engineers that developed i
have come to the realization that more knowledge about the internals benefits bo
our customers and ourselves. Our customers are able to build more robust, bette
performing, and more stable applications with increased knowledge of SQLBase
internals. We benefit from the success of our customers in deploying these robu
applications. We also benefit from receiving feedback from customers whose
knowledge has been enhanced by information we have provided them about SQL
internals. From all of this it became clear that both our customers and ourselves
by producing this book.
Advanced Topics Guide iii

Foreword

ng a

 value
ical
nd
 large-

eeds
of the

his
ternal

e this

ly

nd
ity.
art of

 in

he

ll
g
In 1992 I was approached by Jon Boring of SQL Designs with the idea of produci
book that would thoroughly document SQLBase internals. This notion was very
exciting because of the great need for such information, and also because of the
of having this document produced by a group who is very experienced in the log
and physical design of relational databases. SQL Designs is one of our oldest a
most technically respected business partners. The people at SQL Designs have
shop, mainframe-class database know-how and have been very effective in
transferring this knowledge to the PC client/server world. They have a deep
understanding of the kinds of information a professional database administrator n
for database design and administration. SQL Designs have participated in some
largest and most successful SQLBase projects and are the preferred SQLBase
consultants for some of our largest SQLBase customers.

In 1991 and 1992, they were involved in several large SQLBase projects. From t
project SQL Designs also became very much aware of the great need for such in
documentation. I saw the great synergism that could happen if the SQLBase
development staff and SQL Designs pooled their expertise and talents to produc
book.

From October 1992 to December 1993 SQL Designs embarked upon an intense
research project to learn and understand SQLBase internals. They worked close
with SQLBase development engineers to understand every aspect of the way
SQLBase operates. The information and ideas were refined and reviewed over a
over again by SQLBase engineering and publications staff for accuracy and clar
For a period of time it was as though the people from SQL Designs became a p
the SQLBase 6.0 development project. In fact, the interaction with SQL Designs
resulted in the decision to implement a new feature in SQLBase that allows the
internal statistics SQLBase uses for its query optimization to be altered for the
purpose of query modeling. This feature and several other features implemented
SQLBase 6.0 were a direct result of our interaction with SQL Designs.

Through the SQLBase 6.0 beta program we received excellent feedback about t
value of this book. It was the long awaited answer to many of our customers. We
believe this book will be the answer to those who have been thirsting after the
detailed internal knowledge of SQLBase. We hope and believe that this book wi
become a vital part of the application development process involved in developin
applications and systems using SQLBase.

Bruce D. Scott
Senior Vice President Research & Development,
DataBase and Connectivity Products
Gupta Corporation
iv Advanced Topics Guide

About the Authors

er of

 and
enior
e
izers

t/
y offer
About the Authors
The SQLBase Advanced Topics Guide was written by Jon Boring and Dave Gerb
SQL Designs, Inc. Jon Boring, president and cofounder of SQL Designs, is a
nationally recognized expert in the area of client/server software development
methods and a frequent speaker at industry conferences and trade shows.

Prior to joining SQL Designs, Dave Gerber directed the database administration
systems programming functions at several Fortune 500 corporations. Dave is a s
manager at SQL Designs and oversees the database technology group where h
specializes in database administration, physical database design and query optim
for SQL databases.

SQL Designs is a database consulting organization which specializes in the clien
server architecture and has extensive experience using the Gupta products. The
consulting, applications development, and training in addition to a full range of
support services. Interested parties may contact SQL Designs at:

SQL Designs, Inc.
206 East Pine Street
Lakeland, FL 339801
Telephone: 813.683.3886
Fax: 813.683.3997
Advanced Topics Guide v

Contents
Advanced Topics Guide
Preface. xv

1 Introduction . 1-1

ANSI/SPARC three schema architecture 1-2

Structure of this section. 1-4

2 Conceptual Schema Creation 2-1

Data administration . 2-2

Standards creation and enforcement 2-2

Data dictionary . 2-4

Enterprise-wide data planning 2-4

Subject area databases . 2-5

Logical data modeling . 2-6

Entities and relationships 2-6

Attributes and domains . 2-11

Primary and foreign keys 2-11

Normalization . 2-13

Normal forms . 2-14

Denormalization . 2-18

3 Internal Schema Creation 3-1

Building the initial internal schema 3-2

Creating tables . 3-2

Adding columns to tables 3-3

Data typing for columns . 3-3

Null usage. 3-4

Example 1. 3-5
Advanced Topics Guide vii

Resolving many-to-many relationships 3-6

Adding referential integrity . 3-8

Defining keys . 3-9

Example 2. 3-10

4 External Schema Creation 4-1

Using views as the external schema. 4-2

Creating the initial external schema 4-4

Example . 4-5

5 Transaction Definition 5-1

Benefits of defining transactions 5-2

Physical database design 5-2

Data integrity. 5-2

Defining transactions. 5-3

Transaction name, number, and description 5-3

Transaction type and complexity 5-4

Transaction volumes. 5-4

Transaction performance requirements 5-5

Relative priority . 5-5

Transaction SQL statements 5-6

6 Refining the Physical Design 6-1

Introduction . 6-2

Splitting tables. 6-2

Vertically splitting large rows 6-3

Horizontally splitting tables 6-4

Tailoring performance requirements. 6-5

Referential integrity considerations. 6-5

Clustering of table rows. 6-7

Direct random access of rows 6-7

Clustering rows together. 6-8

Indexing. 6-10

Column cardinality and selectivity factor. 6-11
viii Advanced Topics Guide

Composite indexes . 6-12

Good index candidates . 6-14

Poor index candidates . 6-15

Database partitioning . 6-16

Free space calculations . 6-18

7 Physical Design Control. 7-1

Introduction . 7-2

The process . 7-2

Step one . 7-3

Step two . 7-6

8 Database Pages. 8-1

Pages and page types . 8-2

Data pages . 8-4

Row pages . 8-4

Extent pages. 8-7

Long varchar pages . 8-11

Overflow pages. 8-12

Index pages. 8-14

Control pages . 8-16

Database control block . 8-16

Free extent list . 8-17

Group free page list . 8-17

Group extent map. 8-17

Bitmap pages . 8-17

Row count page . 8-18

Table data page . 8-18

Page allocation and garbage collection 8-18

Page allocation . 8-18

Garbage collection . 8-20

9 B-Tree Indexes . 9-1

Introduction . 9-2
Advanced Topics Guide ix

Binary search trees . 9-3

Multiway trees . 9-4

B-Trees . 9-4

The order of a B-Tree . 9-5

Sequencing within a node. 9-5

Balancing B-Trees . 9-6

B-Tree operation costs . 9-9

B+-Trees . 9-10

Prefix B+-Trees . 9-12

SQLBase implementation . 9-12

Index node size. 9-12

Performance considerations. 9-13

Non-unique indexes . 9-15

10 Hashed Indexes . 10-1

Hash table overview . 10-2

Row location in hashed tables 10-2

Performance benefits of hashed tables 10-2

Potential pitfalls of hashing 10-3

Hashing theory . 10-4

The hash function . 10-4

Bucket hashing . 10-5

Collisions and overflows 10-5

Collision avoidance techniques 10-6

Hashing disk space utilization and performance 10-7

SQLBase hashing implementation 10-11

Location of table rows. 10-11

Hash function . 10-11

Specifying the packing density 10-13

11 Estimating Database Size. 11-1

Introduction . 11-2

Spreadsheet usage. 11-3

Formulas for estimating database size 11-3
x Advanced Topics Guide

Calculation of column width 11-4

Table size calculations . 11-6

BTree Index size calculations. 11-7

Estimation of overhead for views 11-8

Fixed amount of overhead 11-8

Example of size estimation 11-10

12 Result Sets . 12-1

Introduction . 12-2

Characteristics of result sets 12-2

Physical structure of result sets 12-2

Logical contents of result sets 12-3

Population of result sets 12-7

Flushing of result sets. 12-8

Processing result sets . 12-9

Lock duration on result set rows. 12-10

Concurrency and derived result sets 12-10

Concurrency and non-derived result sets. 12-11

13 Concurrency Control 13-1

Introduction . 13-2

Transaction serialization . 13-2

Lock types and scope . 13-5

S-locks . 13-6

X-locks . 13-6

U-locks . 13-6

Lock compatibilities. 13-7

Locking level . 13-7

Locking scope. 13-7

Lock implementation. 13-9

Isolation levels. 13-10

Using isolation levels effectively 13-11

Selecting isolation levels. 13-13
Advanced Topics Guide xi

14 Logging and Recovery 14-1

Introduction . 14-2

Failure types . 14-2

Transaction failures . 14-2

System failures . 14-3

Media failures . 14-3

Recovery mechanisms . 14-4

The log file . 14-4

Backup and recovery . 14-14

15 Introduction to Query Optimization . . . 15-1

Data access languages. 15-2

Procedural data access languages. 15-2

Declarative data access languages 15-3

Query optimization . 15-4

Syntax optimization. 15-4

Rule-based optimization 15-5

Cost-based optimization 15-7

Query optimization steps 15-7

16 Overview of the SQLBase Query
Optimizer. 16-1

Introduction . 16-2

Relational operations . 16-3

Projection . 16-5

Selection. 16-5

Join . 16-6

Aggregation . 16-8

SQLBase physical operators. 16-9

Sort . 16-9

Aggregation . 16-9

Disk access operation. 16-10

Join operations . 16-11

Imbedded operators . 16-14
xii Advanced Topics Guide

Query plan structure . 16-15

Query trees . 16-15

Building query trees . 16-16

Predicate logic conversion 16-17

17 SQLBase Optimizer Implementation . 17-1

Database statistics . 17-2

Table statistics . 17-2

Index statistics . 17-4

Selectivity factor . 17-6

Use of statistics by the optimizer. 17-9

18 Working with the SQLBase Query
Optimizer. 18-1

Introduction . 18-2

Update statistics . 18-2

Optimal index set . 18-2

Tuning a SELECT statement 18-3

Step 1: Update statistics 18-3

Step 2: Simplify the SELECT command 18-4

Step 3: Review the query plan 18-6

Step 4: Locate the bottleneck 18-6

Step 5: Create single column indexes for the
bottlenecks . 18-7

Step 6: Create multi-column indexes 18-8

Step 7: Drop all indexes not used by the
query plan. 18-9

Index . Index-1
Advanced Topics Guide xiii

ions
izer.

Advanced Topics Guide
Preface

This is an advanced reference manual for SQLBase. It contains detailed discuss
of various technical topics, including database design and SQLBase query optim
Advanced Topics Guide xv

Preface

sing

 of

onitor

for the
 the

ystem.
Audience
The Advanced Topics Guide is written for anyone using the advanced features of
SQLBase. This includes:

• Application developers

Application developers build client applications that access databases u
frontend products like SQLWindows and the SQL/API.

• Database administrators (DBAs)

Database administrators perform day-to-day operation and maintenance
the DBMS and an organization’s databases. They install maintenance
releases, load data, control access, perform backup and recovery, and m
performance.

• Database designers

Database designers, or senior database administrators, are responsible
logical and physical design of databases. Their responsibility is to ensure
database meets the operational and performance requirements of the s

This manual assumes you have:

• Knowledge of relational databases and SQ

• Familiarity with the material in the other SQLBase manuals.

What is in this manual
This manual is organized into the sections listed below, each of which is further
subdivided into a number of chapters. There is also an index.

Section Name Description

Database Design Chapters 1-7 discuss logical and physical database design.

SQLBase Internals Chapters 8-14 present several SQLBase internals topics.

SQLBase Query
Optimizer

Chapters 15-18 discuss the SQLBase query optimizer.
xvi Advanced Topics Guide

rst
Notation conventions
The table below show the notation conventions that this manual uses.

Notation Explanation

You A developer who reads this manual.

User The end-user of applications that you write.

bold type Menu items, push buttons, and field names. Things that you select.
Keyboard keys that you press.

Courier 9 Builder or C language code example.

SQL.INI

MAPDLL.EXE

Program names and file names.

Precaution Warning:

Vital
information

Important:

Supplemental
information

Note:

Alt+1 A plus sign between key names means to press and hold down the fi
key while you press the second key.

TRUE

FALSE

These are numeric boolean constants defined internally in Builder:

Constant Value Meaning

TRUE 1 Successful, on, set

FALSE 0 Unsuccessful, off, clear
Advanced Topics Guide xvii

Preface

s

e

, and

om/

ng
Online

or

hasis

e,
Other helpful resources
Centura Books Online. The Centura document suite is available online. This
document collection lets you perform full-text indexed searches across the entire
document suite, navigate the table of contents using the expandable/collapsible
browser, or print any chapter. Open the collection by selecting the Centura Book
Online icon from the Start menu or by double-clicking on the launcher icon in the
program group.

Online Help. This is an extensive context-sensitive online help system. The onlin
help offers a quick way to find information on topics including menu items,
functions, messages, and objects.

World Wide Web. Centura Software’s World Wide Web site contains information
about Centura Software Corporation’s partners, products, sales, support, training
users. The URL is http://www.centurasoft.com.

To access Centura technical services on the Web, go to http:/www.centurasoft.c
support. This section of our Web site is a valuable resource for customers with
technical support issues, and addresses a variety of topics and services, includi
technical support case status, commonly asked questions, access to Centura’s
Newsgroups, links to Shareware tools, product bulletins, white papers, and
downloadable product updates.

For information on training, including course descriptions, class schedules, and
Certified Training Partners, go to http://www.centurasoft.com/training.

Other Publications. Depending on your requirements, you also use publications f
these products:

• A Guide to the SQL Standard, C.J. Date

This book describes the SQL relational database language with an emp
on both the official standard version of SQL and on the use of SQL for
programmed (versus interactive) database access.

• SQL & Its Applications, Raymond A. Lorie and Jean-Jacques Daudenard
Prentice Hall, 1991.

• The Art of Computer Programming, D.E. Knuth, Addison-Wesley, 1973.

• The Ubiquitous B-tree, D. Comer, ACM Computing Surveys, Vol. 11, No. 2
(June 1979).

• Files and Databases, an introduction, P. Smith and G. Barnes, Addison-
Wesley, 1987.

• Algorithms + data structures = programs, N. Wirt, Prentice-Hall, 1976.
xviii Advanced Topics Guide

ntice-

• Relational Completeness of Data Base Sublanguages, E.F. Codd, in Data
Base Systems, Courant Computer Science Symposia Series, Vol. 6. Pre
Hall, 1972.

• Concurrency Control and Recovery in Database Systems, Philip Bernstein,
Vassos Hadzilacos, and Nathan Goodman, Addison-Wesley, 1987.

• An Introduction to Database Systems, C.J. Date, Addison-Wesley, 1990 (5th
edition).

• Relational Database: Writings 1985-1989, C.J. Date, Addison-Wesley,
1990.

• Relational Database: Writings 1989-1991, C.J. Date, Addison-Wesley,
1992.

• The Relational Model for Database Management: Version 2, E.F. Codd,
Addison-Wesley, 1990.

• Computer Data-Base Organization, James Martin, Prentice-Hall, 1977 (2nd
edition).

• Query Evaluation Techniques for Large Databases, Goetz Graefe, ACM
Computing Surveys, Vol. 25, No. 2 (June 1993).

• Join Processing in Relational Databases, Priti Mishra and Margarate Eich,
ACM Computing Surveys, Vol. 24, No. 1 (March 1992).

• On Optimizing an SQL-like Nested Query, Won Kim, ACM Transaction on
Database Systems, Vol. 7, No. 3 (September 1982).

• Join Processing in Database Systems with Large Main Memories, Leonard
Shapiro, ACM Transaction on Database Systems, Vol. 11, No. 3 (September
1986).

Send comments to...
Anyone reading this manual can contribute to it. If you have any comments or
suggestions, please send them to:

Technical Publications Department
Centura Software Corporation
975 Island Drive
Redwood Shores, CA 94065

or send email, with comments or suggestions to:

techpubs@centurasoft.com
Advanced Topics Guide xix

Advanced Topics Guide
Chapter 1

Introduction

This chapter introduces the following chapters on database design:

• Chapter 2 - Conceptual Schema Creation

• Chapter 3 - Internal Schema Creation

• Chapter 4 - External Schema Creation

• Chapter 5 - Transaction Definition

• Chapter 6 - Refining the Physical Design

• Chapter 7 - Physical Design Control
Advanced Topics Guide 1-1

Chapter 1 Introduction

was

e
 and
s

ma

ema

d or

an
e the

l

y

sible
a is

ructs
on,
al
 These
f an
ptual
ta in
 have
ANSI/SPARC three schema architecture
The Database Design Section is organized around a database architecture that
originated by the ANSI/X3/SPARC Study Group on Data Base Management
Systems. This group was established in 1972 by the Standards Planning and
Requirements Committee (SPARC) of ANSI/X3. ANSI is the American National
Standards Institute and X3 is this organization’s Committee on Computers and
Information Processing. The objectives of the Study Group were to determine th
areas, if any, of database technology for which standardization was appropriate,
to produce a set of recommendations. The Study Group concluded that interface
were the only aspect of a database system that could possibly be suitable for
standardization, and so defined a generalized architecture or framework for a
database system and its interfaces.

This architecture includes three separate schemas (a schema is a model or formalism
to represent an abstract concept) of an organization’s data resource. Each sche
provides a perspective that serves a limited purpose and is optimized towards a
different set of objectives. The schemas included in the ANSI/SPARC three- sch
architecture are the conceptual, external, and internal.

The conceptual schema, sometimes referred to as the logical data model, is based on
the natural characteristics of the data without regard to how the data may be use
physically stored. The conceptual schema models the data and the relationships
between data as they naturally exist. The assumption is that this perspective of
organization’s data resource is the least likely to change over time and is therefor
most stable. Likewise, it is assumed that how data is used and physically stored
changes frequently over the life of an organization. Consequently, the conceptua
schema is the primary or base schema within the ANSI/SPARC three schema
architecture to which the internal and external schemas are mapped.

The external schema is the user's views or filters of the database and specificall
considers how the data is used. The views are tailored to the user’s information
requirements and allow the user access to the required data in the simplest pos
form. Since the user’s data requirements change frequently, the external schem
subject to constant revision.

The internal schema is a mapping of the conceptual model to the physical const
of the target database management system (DBMS). In performing this translati
the database designer may introduce new physical objects or alter the conceptu
objects to achieve better performance or capacity and a more usable database.
design changes can be made to exploit the hardware or software environment o
implementation platform. Since these changes should not be visible at the conce
level, the actual meaning of the data does not change. Since the views of the da
the external schema are also independent of this physical schema, users do not
to deal with the physical objects.
1-2 Advanced Topics Guide

ANSI/SPARC three schema architecture

hree
om
s
BMS
al

nge
ree
ostly

ta

Through the three schemas and the mapping between them, the ANSI/SPARC t
schema architecture provides a level of indirection which insulates user needs fr
database performance and capacity concerns. The major advantage of using thi
architecture is that as the physical characteristics of the data and/or the target D
changes over the life of the database, database designers can adjust the physic
constructs of the internal schema without affecting existing program modules.
Similarly, the user’s views of the data can be changed as their requirements cha
without affecting the manner in which the data is physically stored. Without the th
schema (or similar) architecture, changes to the physical database can require c
effort wasted on maintenance of existing program modules.

Although no commercial DBMS now provides full support for the ANSI/SPARC
three schema architecture, this architecture provides an excellent goal for the da
base administrator (DBA) to work towards. It also provides a good framework for
organizing database design activities.
Advanced Topics Guide 1-3

Chapter 1 Introduction

h the
SI/

ema
iews
ter 4
is a
ork

base
Structure of this section
In the remaining six chapters of this section we reveal a step by step path throug
database design process which specifies and optimizes each schema of the AN
SPARC three schema architecture. This process is shown in Figure A.

Figure 1A - Database design chapters and deliverables

Some DBAs do not like the work required to create and maintain the external sch
level of the ANSI/SPARC standard. Since the benefits of using this set of user v
are limited by the current state of the art in relational database theory (see chap
for further details), they avoid this work until the payoff is more substantial. This
valid viewpoint, and organizations that wish to take this approach may omit the w
in Chapter 4, External Schema Creation. They can then code all of their transaction
data manipulation language (DML), as well as user queries, directly against the

Internal Schema Creation

Refining the Physical Design

Physical Design Control

Transaction Definition

C us t O rd er

Lo g ica l D a tab a se D es i gn

F i rs t-C u t D ata b as e

U ser V iew s

Tra ns ac t ion D e fin it i ons

B etter D a tab a se

O p tim ized D a ta b a se

Conceptual Schema Creation

External Schema Creation

Ch a pte r 2

C ha p ter 3

C ha p ter 4

Ch a pte r 5

Ch a pte r 6

Ch a pte r 7
1-4 Advanced Topics Guide

Structure of this section

ns
d

ell-
re

gical
tation

e on

ion
ASE

MS,

a or

d by
rules

ut

)

or the
t any

ss
tables in the internal schema. The risk associated with doing this is that alteratio
made to the physical design have a greater chance of affecting existing DML an
causing some re-coding to keep the DML valid. Note that creating the external
schema does not totally eliminate this risk.

Chapter 2 - Conceptual Schema Creation
Logical data modeling, the creation of the conceptual schema, is a (relatively) w
known process within the database industry. Many books and training courses a
available on the subject. Consequently, this chapter does not attempt to present an
exhaustive treatment of this material. Rather, this chapter introduces you to the lo
database design process. Readers who are interested in a more detailed presen
of the material are encouraged to read one of the many excellent books availabl
the subject or attend a local training course.

In addition, the database industry has standardized on the “Entity-Relationship
Diagram,” or ERD, to represent the conceptual schema. Consequently, many
Computer Aided Software Engineering (CASE) vendors market tools for entity
relationship diagramming. You may find one of these tools beneficial in the creat
of your conceptual schema. Centura has established partnerships with several C
vendors to provide tighter degree of integration between the CASE tool and the
Centura software. At the time this manual was written, partnerships exist with LB
Intersolv, Bachman, Popkin, Visual Systems and LogicWorks.

Chapter 3 - Internal Schema Creation
In this chapter we cover the tasks necessary to create the first-cut internal schem
physical database design. The database constructed in this chapter is an initial
prototype only, representing the logical data requirements in their simplest form,
without any processing requirements. The first-cut internal schema is constructe
applying some simple conversion rules to the entity relationship diagram. These
are discussed in detail in this chapter.

Also, many of the CASE tools discussed above automatically generate the first-c
internal schema. You may find using a CASE tool which converts an entity
relationship diagram to SQLBase compatible SQL DDL (data definition language
beneficial.

Chapter 4 - External Schema Creation
In this chapter we cover the tasks required to create the first user views needed f
external schema. These views are mainly reflections of underlying tables withou
complex user requirements. We introduce you to the on-going process of view
administration, since the external schema evolves as new needs arise. We discu
tasks of view administration and the underlying security requirements of views.
Advanced Topics Guide 1-5

Chapter 1 Introduction

nd
nts in
ter
d.

al of

ve
 this

e, the
e

re
es.
goal is

il all
Chapter 5 - Transaction Definition
We create transaction definitions at this point because they represent detailed a
critical processing requirements. The final database must meet these requireme
order to be completed successfully. Completion of the tasks outlined in this chap
provides the yardstick by which the rest of the database design process is judge

Chapter 6 - Refining the Physical Design
In this chapter we re-visit the internal schema created in chapter three with the go
introducing physical database design optimization methods which improve its
performance and capacity. At this point in the database design process, general
guidelines and heuristics are applied to the first-cut physical database design to
produce a better physical database design, or internal schema. Over the years,
database designers have discovered many rules-of-thumb or heuristics to impro
overall database performance. Many of these common guidelines are detailed in
chapter.

Chapter 7 - Physical Design Control
In this chapter we conclude the database design effort by entering the next stag
iterative process of adjusting the internal schema to meet the objectives set in th
transaction definitions. Transactions that fail to meet processing requirements a
examined for possible improvements that target their particular database access
Next we evaluate the effect on the other transactions that use the database. Our
to find an acceptable trade-off between conflicting requirements of all of the
transactions which make up the complete system. This process is reiterative unt
critical transactions are performing effectively.
1-6 Advanced Topics Guide

three
odels
rally
ee

Advanced Topics Guide
Chapter 2

Conceptual Schema
Creation

The conceptual schema is the primary or base schema within the ANSI/SPARC
schema architecture and is sometimes referred to as the logical data model. It m
an organization’s data resource and the relationships between data as they natu
exist without regard to how the data may be used or physically stored. Of the thr
schemas, this is the least likely to radically change over time.

This chapter introduces the process of logical data modeling and several related
topics. In this chapter we:

• Introduce the data administration function and responsibilities.

• Cover logical database design.

• Explain types of entity-relationship data models.

• Explain the data normalization technique.
Advanced Topics Guide 2-1

Chapter 2 Conceptual Schema Creation

se

e that
n
 the
er
le in

hout
s can
he

of
 and
his

lly
hey

ho

cts in
u.

s.

f
t they
Data administration
The data administration (DA) function plays a consulting role in the process of
logical database design. This contrasts with the traditional mission of the databa
administration (DBA) function, which is mainly responsible for physical database
design and implementation tasks. The mission of data administration is to ensur
an organization’s data resources are managed responsibly and recognized as a
important asset. A data administration department is responsible for formulating
plans that guide the evolution of all corporate databases. By providing this mast
plan, the DA function ensures that corporate computing systems will be compatib
the future.

This compatibility guarantees that future system development will not adversely
affect existing systems and users in some way, and that information in separate
databases today can be combined in the future without undue cost or delay. Wit
this assurance, a company can be exposed to financial and operational risk. Thi
arise from either the disruption of mission critical computer systems or through t
company’s inability to meet future information requirements effectively.

Many corporations have not formally established a DA function. In the absence
this formal mandate, it is important for those personnel responsible for operating
maintaining the database environment to establish an agreement to “self-rule.” T
helps to avoid the pitfalls caused by a lack of standardization. Since database
professionals are often the first people to realize the benefit of establishing DA
practices, it behooves them to either attempt to persuade management to forma
establish the DA function, or to make it part of their regular procedures as best t
can.

In this chapter we intend to provide a starting point for database administrators w
are working without formal DA functions and who have not yet adopted any DA
practices. There are many books and articles that treat these and other DA subje
great detail, and we encourage you to search out those subjects that interest yo

Standards creation and enforcement
One of the first tasks of data administration is the creation of numerous standard
The policing of these standards is one of the major ongoing efforts of the DA
function. There are many opinions regarding the exact composition of these
standards, particularly naming standards. However, the most important aspect o
these standards is that they exist, are fully documented and distributed, and tha
are followed.
2-2 Advanced Topics Guide

Data administration

ul in

h as
way.
name
s
ion

mes

een

pdate

or

nts
ead-

 file.

 can

ents
ed.
The following list represents some of the areas in which standards are generally
created:

• Abbreviations

Standards for the abbreviations used as roots for object names are usef
maintaining naming consistency.

• Data element (or attribute) names

These standards benefit users who access the database using tools suc
Quest. These users must find the information they need in a consistent
When several people are creating new elements, variations of the same
can be created. Good element and abbreviation standards can solve thi
problem. Element naming standards should also address the capitalizat
and word separators of multi-name elements.

• Table names

The previous comments on data element names apply here as well. Na
must be simple and meaningful to users.

• View names

Many sites want naming conventions that allow easy differentiation betw
views and tables. Some sites like to highlight views that result in join
operations since these may be time consuming and have restrictions on u
operations.

• Program names

Most installations try to indicate application ownership of programs by
mnemonics in the name. Mnemonics are short abbreviations, often two
three letters, which contain enough of the original phrase to prompt an
association to the original. An example of a mnemonic is “AR” for accou
receivable. Also, some sites like to be able to tell whether a program is r
only from the name alone.

• File names

File names should bear some relationship to the database that owns the

• User names

These standards have to do with who a person is and where that person
be found, either by department or physical location.

The definition and utilization of standardized templates is valuable in
performing security authorizations for users based on the data requirem
of their job. This procedure is very useful when an audit is being perform
Advanced Topics Guide 2-3

Chapter 2 Conceptual Schema Creation

ases

 is a
mes,

h
 use
 they

a.

can
ing
ed

e
nd

ls
e

vity
h
eation

ts of
admap
• Database names

Standardizing database names simplifies operational control of the datab
for day-to-day use. The same applies to the following areas or items:

• Server names

• Workstation names

• Printer names

Data dictionary
One of the key tools of data administration is a data dictionary or repository. This
special database which contains metadata (data about data such as element na
meaning, data type, null characteristics, masks, and validations) describing the
business’s database environment. Within the dictionary is information about eac
table, its columns, indexes, views, and relationships to other tables. Through the
of the dictionary, users and programmers can find the data items, tables, or views
need. Also, data administrators can monitor naming standards, locate data, and
eliminate inconsistencies in the ways various departments describe and use dat

Since the dictionary is the main tool needed for data administration, database
administrators who attempt to provide basic DA functions for their organizations
design and implement a simple dictionary for their own use. A database describ
tables, views, and columns can be created and then populated with data extract
from the SQLBase system catalog tables. These are included in every SQLBase
database, and have names which start with “SYSADM.SYS”, such as
“SYSADM.SYSTABLES.” By combining this information across all databases, th
DBA can locate and correct non-standard names, inconsistent key definitions, a
duplicate table or column definitions.

The Team Object Manager component of Centura Team Developer contains a
repository which you may use to store your metadata. Similarly, many CASE too
include a data dictionary and you may find it beneficial to use the repository of th
CASE tool you have selected to perform database design tasks.

Enterprise-wide data planning
Corporations which conduct strategic management as an organization-wide acti
usually perform some type of strategic planning within the MIS division. Althoug
various strategic planning methods may be used, most techniques lead to the cr
of a strategic data plan. This plan serves as a guide for the development of the
corporation’s data resource throughout its development. Often, one of the outpu
the strategic data plan is an enterprise-wide data model that can be used as a ro
by future database designers.
2-4 Advanced Topics Guide

Data administration

ship
ion
ched,

ide
t with
t of
ir
e

.
as

ble
nd an
oth a
s in
n
o

d

result
, and
e
porate

pent

uilt for
t data
ned

plete,
ritten.
The format of an enterprise-wide data model is generally that of an entity-relation
diagram (ERD). This diagram shows the major business entities in the organizat
and the way they relate to each other. The entities should have descriptions atta
but most attributes can be omitted when the modeling is done at this high level.
Include primary key attributes, along with their data types, in order to enforce
consistency among these critical attributes.

It is up to database designers working in organizations that have an enterprise-w
data model to be familiar with the model and to keep database designs consisten
it. While the enterprise model will be missing some low-level entity types and mos
the attributes, it should dictate the general structure of the major entities and the
relationships in any lower level design. If this is not true, then adjust the enterpris
model. Analyze and document any impact from making these changes.

Subject area databases
A database may be designed around either application systems or subject areas
Research and experience has shown that building databases around subject are
rather than application systems to be far superior.

For example, an organization could build a database around an accounts receiva
application, with its own customer entity, and then design another database arou
order entry application, also containing another customer entity. This results in b
proliferation of databases as well as data duplication. While the customer entitie
the two databases just mentioned may differ in some ways, they probably have a
overlap of many attributes such as name and address. Keeping track of these tw
entities’ common attributes is difficult and error prone. Most application systems
designed with their own database simply ignore the similar information in other
systems and make no effort to maintain consistency. Consequently, most
organizations with a formal data administration function design databases aroun
business subject areas rather than application systems.

Center the design around subject areas, such as product or customer, and your
will be many different applications and user departments that can create, update
share information in a seamless fashion. In addition, you are likely to find that th
time necessary to develop application systems decreases significantly as the cor
database is completed.

This is because a significant portion of most application development projects is s
building the programs necessary to add, change, and delete persistent data. If
databases are designed around application systems, then a database must be b
every application system and the programs to add, change, and delete persisten
must be written for every application. On the other hand, if the database is desig
around subject areas with a high degree of data sharing, at some point in an
organization’s development cycle all subject areas are built, the database is com
and all the programs necessary to add, change, and delete persistent data are w
Advanced Topics Guide 2-5

Chapter 2 Conceptual Schema Creation

pidly
ta.

ta
n
ese
 later
h

y have

ask is

 is

sibly
at
of the

, the
eir

the
ut are
 are

 the
r event

nted

Once an organization reaches this stage, new applications can be developed ra
since no new programs must be written to add, change, and delete persistent da

Organizations that have a formal DA function and have completed a strategic da
plan and an enterprise data model often move on to performing data modeling o
certain key business areas before starting development work on applications. Th
business area data models are usually fully normalized (normalization is covered
in this chapter) and complete, with specifications of all keys and attributes in eac
entity included within the model. These data models serve as good sources of
material for a database design and can often be used as is, but two or more ma
to be merged to obtain the complete set of data required by one application.

Logical data modeling
The most rigorous technique now in use to perform the logical database design t
logical data modeling. Using diagram symbols, a model (or picture) of the data
required to meet the objectives of the system is developed. The resulting model
called an entity-relationship diagram (ERD).

Techniques are applied to this model to verify its accuracy, completeness, and
stability. The model can then be translated into a physical database design, pos
for multiple implementation platforms, by performing a transformation process th
meets specific performance requirements as well as any special characteristics
chosen physical architecture.

The three most common styles of ERDs in use today are the Bachman diagram
Information Engineering diagram and the Chen diagram. Two are named after th
authors, while the other was specified by James Martin as a component of his
information engineering (IE) diagram set. Each style represents similar types of
objects, and examples of each follow. The most basic objects are the entity and
relationship. Keys, attributes, and domains are not assigned diagram symbols, b
important background objects for logical data modeling. Each of these concepts
discussed in the following sections.

Entities and relationships
Entities are the basic information units of an ERD and are equivalent to tables in
finished physical database design. Entities represent a person, place, concept, o
in the real world about which information is needed. Examples of entities are
customers, orders, invoices, employees, warehouses, and so on. Entities are
represented by boxes in all three diagram styles.

Relationships are connections between one or more entities. These are represe
graphically by lines containing various symbols that convey characteristics of the
relationship. The majority of relationships involve only two entities and are called
2-6 Advanced Topics Guide

Logical data modeling

wn in

ip

ach
r

ic of

tion,
se of
is
,
gh
binary relationships. These are often broadly classified according to how many
occurrences of an entity type can appear on each side of the relationship, as sho
Figure A.

Figure 2A - Types of relationships classified by maximum cardinality or relationsh
volume.

An example of a simple ERD for each of the three diagramming styles follows. E
diagram depicts the same model, a common example of a business’s basic orde
processing data requirements.

The Bachman ERD style

Figure 2B - Bachman ERD of order processing data requirements

In the Bachman ERD, the CUSTOMER entity has a relationship with the ORDER
entity, as indicated by the line between the two entities. An important characterist
the relationship is its cardinality, which describes the allowable number of
occurrences of each entity type involved in the relationship. In the Bachman nota
minimum cardinality (which can be either zero or one) is described through the u
circles at the ends of the lines (a relationship with a minimum cardinality of zero
often called optional, while those with a minimum of one are termed mandatory)
while maximum cardinality (which can be either one or many) is described throu

One -to-one

One-to-ma ny

Man y-to-m a ny

CUS TO MER
ha s pla ce d

 by
ha s

w ith in

f orha s

PRO D UCT

O RD ER

ITEM
ORD ER
Advanced Topics Guide 2-7

Chapter 2 Conceptual Schema Creation

llow,

s

f
tity,

at a

gle
ER

 is

o
re
 is

e of
the use of arrows. In the case of minimum cardinality, the circle can either be ho
indicating zero, or filled in, indicating one. To describe maximum cardinality, the
absence of the arrow means a maximum of one, while the presence of the arrow
means a maximum of many (more than one).

In Bachman terminology, a relationship is called a partnership set, which is made up
of two partnerships. Each of these two partnerships is owned by one of the entitie
involved in the relationship. In this example, CUSTOMER has a partnership with
ORDER, and ORDER also has a partnership with CUSTOMER. These two
partnerships together form the CUSTOMER-ORDER partnership set.

For CUSTOMER’s partnership with the ORDER entity, the minimum cardinality o
orders for a customer is specified by the hollow circle next to the CUSTOMER en
which is labelled “has.” The minimum cardinality is zero therefore this circle is
hollow. This means that a customer may exist without any orders. The maximum
cardinality of the ORDER entity from the perspective of the CUSTOMER is
described by the arrow on the ORDER side of the relationship, which specifies th
customer may have many orders. If there were no arrow, then the maximum
cardinality would be one rather than many, and a customer could have only a sin
order at any one time. The way to read this relationship in terms of the CUSTOM
entity is to say, “A customer has from zero to many orders.”

From the ORDER perspective, the minimum cardinality of CUSTOMER is 1. This
noted by the circle next to the ORDER entity which is labelled “placed by” and is
filled in. The maximum cardinality of the relationship is also one, since there is n
arrow on the CUSTOMER side of the relationship. This type of relationship, whe
an entity has both minimum and maximum cardinality of one with another entity,
often called a dependency. The ORDER entity is said to be dependent on
CUSTOMER, since it could not exist without a relationship to a single occurrenc
CUSTOMER. The reading from the ORDER entity’s perspective is, “An order is
placed by one, and only one, customer.”

In a similar manner, the other relationships read:

• An order has 1 or many items.

• An item is within 1, and only 1, order.

• A product has from zero to many items.

• An item is for 1, and only 1, product.
2-8 Advanced Topics Guide

Logical data modeling

um
self.
wo

ircle
The Information Engineering ERD style

In the Information Engineering ERD, entities are also depicted by boxes and
relationships as lines. The significant difference from the Bachman ERD is the
graphic description of relationship cardinality. In this diagram, each entity’s minim
and maximum cardinality in a relationship is described immediately adjacent to it
For instance, the CUSTOMER’s cardinality with respect to ORDER is shown in t
horizontal bars immediately below CUSTOMER. The symbol closest to an entity
describes the maximum cardinality and can be either a bar (indicating one), or a
crow’s foot (indicating many). Following the relationship line, the next symbol
describes the minimum cardinality and can be either a bar (indicating one), or a c
(denoting zero). The meaning of each relationship in Figure C is the same as
described for Figure B.

O RDE R

ORDE R_ITEM

PRO DUC T

C US TO MER

Figure 2C - Information Engineering ERD of order processing data requirements
Advanced Topics Guide 2-9

Chapter 2 Conceptual Schema Creation

es.
t in

may

 as

 in
ns,

ER
hip

of

 the
g a

h
tion

”,

er to
 by
The Chen ERD style

In the Chen ERD, there is a more significant deviation from the previous exampl
Entities are still represented by boxes, and lines between entities still play a par
representing relationships, but now there are also diamonds that appear on the
relationship lines which contain the name of the relationship. Also, relationships
have attributes assigned to them directly. These are called information bearing
relationships. In the Chen diagram, attributes may appear directly on the diagram
bubbles which contain the attribute’s name and are attached to the entity or
relationship to which they belong. Attributes have been omitted from this diagram
order to remain uncluttered and consistent with prior diagrams. When this happe
the relationship containing the attributes would be transformed into a table in the
physical database design in the same way that entities become physical tables.

The ORDER ITEM relationship is an example of this. In previous diagrams, ORD
ITEM was an entity rather than a relationship. In the Chen diagram, the relations
between ORDER and PRODUCT is indicated as having a maximum cardinality
“many” on both sides (shown by the “M” and “N”), and the ORDER ITEM
relationship between them is information bearing and would appear as a table in
resulting physical database design. The table that results from two entities havin
many-to-many relationship is said to resolve the relationship. The data contained in
the table is called junction data, because it is the information that is unique for eac
occurrence of the relationship between the two entities. In this example, the junc
data would be attributes such as QUANTITY-ORDERED. Also, while the Chen
diagram indicates maximum cardinality by means of a number or symbol (the “1
“N”, and “M” in Figure D) next to the entity involved in a relation, minimum
cardinality is not depicted. In Figure D, “N” orders occur for each CUSTOMER
(where “N” indicates some number greater than 1), thereby depicting the custom
order relationship as one-to-many. The “one” side of this relationship is indicated
the “1” appearing next to the CUSTOMER entity.

O RD ER

PR ODU CTCU STO MER

N1

M

O RDER
 ITEM

 CU ST.
ORD ER

Figure 2D - Chen ERD of order processing data requirements
2-10 Advanced Topics Guide

Logical data modeling

n
e

are

utes

on on
an

T-
e

e
-
set

is is

y
 the

n
For a
d.
two
me

 is
Attributes and domains
Attributes are simply characteristics of entities. They either describe or identify a
entity. Identifying attributes are also called keys, which are further explained in th
next section and are data items such as EMPLOYEE-NUMBER, CUSTOMER-
NUMBER and SSN (social security number). Examples of descriptive attributes
EMPLOYEE-NAME, CUSTOMER-ADDRESS and PRODUCT-DESCRIPTION.
Following the transformation of the logical design into a physical database, attrib
will become columns of tables.

Domains are the logical value sets that attributes possess. There is some variati
the definition and use of domains in different diagram styles. Notably, the Bachm
ERD calls this definition of domains a dimension, which is further classified into
domains which then possess a particular display characteristic. The definition of
domain given here is the usage specified by E. F. Codd when he published the
relational data model. Attributes such as TOTAL-SALE-DOLLARS and PRODUC
COST could share a domain called CURRENCY, for example. This is because th
possible values of these attributes is a discrete set of those real numbers that ar
represented by the picture 999,999...,999.99. Likewise, the attributes of ORDER
DATE and BIRTHDATE could share the DATE domain, in which 02/29/1992 is a
member, but 02/29/1993 is not.

Domains provide a means to perform semantic validation of query statements,
particularly for join operations. When tables are joined on columns that are not
defined on the same domain, the results will not be meaningful. An example of th
SELECT * FROM CUSTOMER, ORDER WHERE CUSTOMER.CUSTOMER-
NUMBER = ORDER.TOTAL-SALE-DOLLARS. Although domains do not have to
be specified for a data model since they are not at this point transformed into an
physical design object, their inclusion can provide a means of manually validating
join criteria used in SQL statements. They are also useful in the physical design
process for determining physical data types of table columns.

Primary and foreign keys
The two most important types of keys for database design are primary and foreig
keys. These provide the means by which SQLBase supports referential integrity.
logical data model to be complete, every entity must have a primary key identifie
This primary key can consist of either a single attribute, or may be composed of
or more attributes in which case it is called a concatenated or composite key. So
diagramming techniques allow mandatory relationships to be specified as an
alternative to attributes when defining primary keys. When this is done the effect
for the primary key of the entity on the other side of the relationship to be inherited as
a component of a concatenated key in the dependent entity.
Advanced Topics Guide 2-11

Chapter 2 Conceptual Schema Creation

ancy.
ce of
. The

hich
rise

eous
e

 an
uct

is
t the
w

se
 to
ation.

ntity

The two critical characteristics of a primary key are uniqueness and non-redund
Uniqueness refers to the fact that the value of a primary key for a given occurren
an entity must not be duplicated in any other occurrence of the same entity type
physical design implication is that a unique index must be able to be placed on a
primary key successfully. The non-redundancy characteristic of a primary key, w
applies to concatenated keys only, means that each of the attributes which comp
the primary key must be essential to its uniqueness, so that if any attribute was
removed, then the key would no longer be unique. This last rule prevents extran
information from being placed into keys. These rules for forming primary keys ar
important in the normalization process.

Another rule many organizations follow in formulating primary keys is to avoid
building concatenated keys through stringing together many coded attributes. As
example, consider a part number where codes are present that indicate the prod
family, weight, color, primary vendor, and voltage of the part. Some users like th
type of key because they can tell a great deal about the part merely by looking a
key. The drawback, however, is that when these attributes change (such as a ne
vendor), the primary key has to change. When the primary key changes, any
references to it as a foreign key in related entities must change as well. All of the
changes to data rows consume processing time and also contribute to the need
perform more frequent database reorganizations to prevent performance degrad
Since keys often have indexes placed on them, all these indexes will become
increasingly disorganized as well.

O RDE R(O R DER -NO ,TO TA L-S A LE S-DO LLA RS,O RDE R-DA TE,CUST O M ER-N O)

O RDE R_IT E M(O RDE R-NO ,LIN E-NO ,Q UA NTIT Y-O R DER ED,PRO D UC T-NO)

PR O DUCT (PR O DUCT -NO ,P R OD UCT-DES C)

CUST OM ER(CUS TO M ER-NO ,CUS TO M ER-NA M E,CU STO ME R-AD DRES S)

Leg end :

P rim ary K ey
F ore ig n K ey

Figure 2E - Example of mapping between primary and foreign keys. Dependent e
ORDER_ITEM inherits part of its composite key from ORDER. The ORDER-NO
attribute also serves as the foreign key to ORDER.
2-12 Advanced Topics Guide

Normalization

e of
gn
ears
ar on

n be

of
e
s.

ited
he
ts
ncy,
nger
ill not
his is
ion of
ring

 data
ture of

n
 The
in the

gh
utes

ner

error
Foreign keys must be created in an entity type to indicate the specific occurrenc
another entity with which this entity has a relationship. The attributes of the forei
key must match the primary key of the related entity exactly. The foreign key app
in the entity that is on the many side of a one-to-many relationship, or may appe
either side of a one-to-one relationship. Many logical data modeling diagram
techniques do not explicitly name foreign key attributes, since their existence ca
assumed through the relationships that the entity participates in. When the
relationship is many-to-many, an intermediate table will contain the foreign keys
both entities involved in the relation. See Figure E for the relational notation of th
primary to foreign key mapping for the data model used in the previous example

Normalization
The normalization process is a logical design technique that is especially well su
for use with SQLBase (or for that matter, any DBMS which similarly adheres to t
relational model of data) because of its capability to directly implement the resul
without any translation. Performing normalization results in reduced data redunda
protects against update and deletion anomalies, and provides a more flexible, lo
lasting database design. The resulting database will be easier to maintain and w
require major, high-cost structural changes as often as unnormalized designs. T
due to the inherent stability of basing the data structures on the natural organizat
the basic business information flowing through the corporation rather than structu
it with only a limited user or application perspective.

While the processes that a business performs on its data may change often, the
items that are operated on by those processes can be structured to reflect the na
the company’s business. This means that the application processes, embodied i
program logic, can be more quickly changed to keep pace with company needs.
underlying database remains the same, reflecting the basic information inherent
environment. Attaining this level of stability is the goal of data normalization.

One of the fundamental requirements of a designer who wishes to perform
normalization is to know the meaning of the data intimately and to have a thorou
understanding of its use in the real world of business. The way that a table’s attrib
interact with and depend on each other is the basis for normalization. The desig
performing the normalization process must be knowledgeable of the data at this
detailed level in order to successfully complete the process without undue risk of
arising from misunderstandings or assumptions.
Advanced Topics Guide 2-13

Chapter 2 Conceptual Schema Creation

 stable

le,
rm

e
ess

nsult
l

ext
Normal forms
The normal form is a specific level of normalization achieved by a set of tables
comprising a database design. Each successive normal form represents a more
and controlled stage of design. Higher levels of normal forms always require the
design to be in each lower level of normalization as a prerequisite. As an examp
second normal form requires the design to be in first normal form, third normal fo
requires both first and second forms, and so on.

There are a number of normal forms defined and work is continuing so that mor
forms may appear in the future. Most current texts on database design will addr
normal forms one through five, although only the first three are needed for most
tables. For this reason, only the first three forms are summarized in Figure F. Co
more detailed database design texts for a more in-depth discussion of additiona
normal forms.

Form D escript ion Transform

Un norm alize d D ata

F irs t No rm al Form

Third No rm a l Form

S econd No rm al Fo rm

R ecords w ith no repea tin g
g ro ups

A ll non key data it em s fully
func ti ona lly dep endent on
p rim ary key

A ll non key data it em s
i ndep end ent o f ea ch eac h

Decom pose al l da ta struc tures into f la t,
tw o -dim e nsio na l tab les .

For tables w ith com p os ite pr ima ry keys,
en sure th at all o ther a ttrib utes are dep en dent
on th e w h ole key. S p lit ta ble s a pa rt as
required to ach ieve th is.

Rem ove all transit ive d epe nd en c ie s, split tin g
th e table apa rt as req uired. No n on key a ttr ibute
sho uld rep re sen t a fac t abou t a not her no nkey
at trib ute .

Figure 2F - Summary of normal forms, rules, and steps needed to achieve the n
form
2-14 Advanced Topics Guide

Normalization

table
ved
ach
s an

e
First normal form

Conversion of an unnormalized relation called STUDENT into first normal form is
shown in Figure G. This conversion involves breaking the table apart, with each
having its own primary key identified. Any repeating elements would also be remo
from the relations at this point, so that each resulting table is “flat”, meaning that e
column has a unique name and no columns consist of multiple elements (such a
array). This simple step places these data items into first normal form.

Figure 2G - Conversion of an unnormalized relation, STUDENT, to three separat
relations in first normal form. Primary keys are indicated by the attributes which
Advanced Topics Guide 2-15

Chapter 2 Conceptual Schema Creation

to
ond
me

e is
e
f the

 of

TE
tes
ple
Second normal form

Further transformations are required to bring the data structure from Figure G in
second normal form. As Figure H shows, the CERTIFICATE relation violates sec
normal form, and must be broken apart. The non-key attributes of Certificate_Na
and Certificate_Hours_Reqd are only dependent on part of the primary key,
Certificate_Code. The table is therefore transformed so that the Certificate_Cod
the entire primary key, with the two attributes which depend on it remaining in th
table. The Certificate_Date_Earned attribute, which depended on the entire key o
original CERTIFICATE relation, is placed into a new relation,
STUDENT_CERTIFICATE, along with the original composite key. The entire set
relations is now in second normal form.

Figure 2H - Further normalization of the previous example, where the CERTIFICA
relation violates second normal form. The small arrows indicate which key attribu
each non-key attribute is dependent on. The other relations in the previous exam
are already in second normal form.
2-16 Advanced Topics Guide

Normalization

o get
on
-key
key
le,
ent
lled

ey of
es a

hird

t on
t into
n
Third normal form

One remaining transformation must be done on our data from Figure H in order t
all the relations into third normal form. As shown in Figure I, the STUDENT relati
violates third normal form, and must be transformed into two tables. The two non
attributes Major_Dept_Name and Major_Dept_Location depend on another non-
attribute, Major_Dept_Code. Even though the are currently in the STUDENT tab
they do not depend on the Student_Number primary key directly, but are depend
through the Major_Dept_Code, which is dependent on the primary key. This is ca
a transitive dependency, and is removed by creating a new table with a primary k
the transitive attribute in the original relation. This transitive attribute then becom
foreign key to the new table. The attributes in the original relation that were
transitively dependent are now placed in the new table, where they are fully
dependent on the primary key only. The MAJOR relation in Figure I is formed
through this process. The data originally described in Figure G is now entirely in t
normal form.

Figure 2I - Further normalizing our example to third normal form. The student
relation violated third normal form due to non-key attributes which are dependen
other non-key attributes, as shown by the arrows. These attributes are broken ou
new relations, the original relation as a foreign key to the new relation. This foreig
key attribute is MAJOR_DEPT-CODE in the STUDENT relation.
Advanced Topics Guide 2-17

Chapter 2 Conceptual Schema Creation

w
ing a

r by

.

o
after

al
te
Denormalization
Now that we have looked at the benefits associated with data normalization, a fe
words about denormalization are in order. Denormalization is the process of tak
database design out of third normal form (or some higher form) for performance
reasons. One may denormalize by either redundantly storing prime attributes, o
adding aggregate attributes to the database.

Some database designers routinely denormalize during logical database design
However, the only reason to denormalize is to achieve greater performance. In
addition, because of the added complexities of a denormalized database (refer t
chapter 7 for further details), denormalization should only occur as a last resort
all other means of increasing performance have failed. Consequently,
denormalization should only take place during physical design control. The logic
design should still be maintained in (at least) third normal form in order to facilita
clear thinking about its structure and meaning.
2-18 Advanced Topics Guide

ase

 to
e
al
l
ssed

ut

Advanced Topics Guide
Chapter 3

Internal Schema Creation

In this chapter we cover the tasks necessary to create the first-cut physical datab
design (internal schema). The database constructed in this chapter is an initial
prototype only. The entities, relationships and the other logical constructs of the
conceptual schema are mapped to SQLBase physical constructs without regard
performance or capacity issues. The objective of this step is to produce SQLBas
compliant SQL DDL (data definition language) which represents the initial physic
database design. The first-cut internal schema is constructed by applying severa
simple conversion rules to the entity relationship diagram. These rules are discu
in detail in this chapter.

Many of the CASE tools discussed in chapter 1 automatically generate the first-c
internal schema. You may find using a CASE tool which converts an entity
relationship diagram to SQLBase compatible SQL DDL beneficial.
Advanced Topics Guide 3-1

Chapter 3 Internal Schema Creation

the

 done
 of a

ase,
sses

,

he

e to

e

ask
f
g

jor
 in
Building the initial internal schema
Following completion of the logical database design, the designer must convert
entity relationship diagram (ERD) to SQL data definition language (DDL) which
specifies the desired physical database to SQLBase. This transformation may be
either manually by the designer, or in an automated fashion through the facilities
CASE tool.

The following steps are required to perform the conversion:

• Create the base tables. These are the basic building blocks of the datab
and are derived from the entities contained within the ERD. Each posse
a number of characteristics which must be considered by the designer:

• The table-wide options specified on the CREATE TABLE statement
such as owner, name, and PCTFREE.

• The list of columns contained within the table, which is derived from t
attributes of the original ERD entity.

• The specific data type associated with each column. These may hav
be determined now, or may have been specified as part of the ERD
domain specification.

• Create any required junction tables needed to resolve many-to-many
relationships in the ERD.

• Add referential integrity (RI) specification to the DDL. This implements th
relationships specified in the ERD, and requires the following steps:

• Identify the primary key of each table within the CREATE TABLE
statement.

• Build unique indexes for each primary key of each table.

• Build ALTER TABLE statements which identify the foreign keys
contained within child tables.

Creating tables
The first step in building the ANSI/SPARC internal schema is to identify the
relational tables which will be managed by SQLBase. The primary input to this t
is a completed ERD containing entities and relationships. On completion, a set o
CREATE TABLE skeleton statements may be coded that will serve as the startin
point for the addition of columns and other details.

A base table will be created for each entity on the ERD. Base tables are the ma
information-bearing objects within a relational database, and contrast with views
3-2 Advanced Topics Guide

Creating tables

s or

table
s

ined

ner

ntity

the

LBase
e

dized

tly
ain

ary.
 data
en

re,
,
ing

ays
)
two
that no projection or selection operations may restrict the visibility of any column
rows.

For each base table identified, define a long identifier which uniquely names the
within this database. This name should follow site standards for base table name
while also being as descriptive as possible about the business information conta
within the table. Also, use an explicit authorization-id instead of allowing the
authorization-id to default to the user name of the current user. Select an
authorization-id that meets your site standards, and can serve as a consistent ow
for all application objects within the database.

When you have finished, verify that the number of tables matches the count of e
boxes in the E-R diagram.

Adding columns to tables
The columns needed by the tables you have created are present in the ERD as
attributes. These attributes need to be transformed into column specifications in
middle of the CREATE TABLE statements you will code. The attribute names
themselves must be transformed into column names, and must adhere to the SQ
long identifier restrictions. This is a good time to check that the root portions of th
column names (that part between underscore delimiters) conform to the standar
list of abbreviations. New abbreviations should be evaluated for acceptability and
added to the list. Column names which are not clear and consistent may cause
confusion for programmers and users throughout the life of the application.

Data typing for columns
After identifying the columns, data types need to be added. This task will be grea
simplified if the ERD contains domains and the attributes have all been given dom
assignments. First convert each domain into an appropriate data type, if necess
Some ERDs may have domains which are already specified in terms of RDBMS
types as implemented by SQLBase. These require no further transformation. Wh
performing this conversion, consider the following factors:

• Internally, SQLBase stores all columns as variable length fields. Therefo
choosing between some data types becomes a matter of documentation
which may be useful for range validation purposes. As an example, defin
a classification code column such as LEDGER_SUBCODE in a general
ledger application as CHAR(3) documents the fact that values must alw
consist of three characters (perhaps falling into the range “10A” to “99Z”
more clearly than defining the data type as VARCHAR(3). Each of these
data type definitions results in an identical internal implementation in
SQLBase, however.
Advanced Topics Guide 3-3

Chapter 3 Internal Schema Creation

 the
. If

se
lds

play

st of
ast
 may
er
 to

ted

e

se
ypes,

le

ther
e of
 tests
re in
y
e
may
uter

 the
• If the usage of a numeric data item requires it to be of a fixed width, use
DECIMAL data type with the required precision and an appropriate scale
an integer is desired, use DECIMAL with a scale of zero. This helps to
communicate external formatting requirements more clearly.

• Avoid the use of INTEGER and SMALLINT data types in general. Use the
only for internal control fields such as cycle counters. Formatting these fie
for external display use can be problematic due to the indeterminate dis
width.

• Avoid using LONG VARCHAR unless absolutely required. Each LONG
VARCHAR column must be stored on a separate page, apart from the re
the row to which it belongs. Also, each of these columns will occupy at le
an entire page by itself, regardless of how much free space on the page
be wasted. Therefore, using LONG VARCHAR increases both the numb
of I/O operations to read a row, as well as the amount of space required
store the data. In addition, some @ functions cannot be used with LONG
VARCHAR columns.

• Avoid using CHAR or VARCHAR for data that will always be numeric.
Using a numeric data type will ensure that the field will always be popula
with valid numeric data.

• Avoid the use of the REAL (or FLOAT or DOUBLE PRECISION) data typ
except for situations calling for scientific measurement information
containing a wide range of values. The exponent-mantissa format of the
data types lacks the exact precision associated with other numeric data t
and also causes floating point operations to be performed for their
manipulation. On most CPUs, floating point arithmetic incurs greater cyc
times than integer operations.

• Use the DATE and TIME formats when expressing chronological data.

• Use DATETIME (or TIMESTAMP) for control purposes. Many designers
include a TIMESTAMP field for tracking row creation and updates.

Null usage
When defining data types for columns, you will also need to specify the column’s
ability to assume the null value. Note that null is a special value that indicates ei
“unknown” or “not applicable”. Users and programmers not accustomed to the us
nulls may have problems remembering to include host variable declarations and
for nulls in columns that allow them. Nulls can also cause problems when they a
columns that are used for joining tables together. When the join is performed, an
rows that contain nulls in the join column of either table will not be returned to th
result set. This “missing data” may be disconcerting to a user of the query, who
have expected to see all of the rows of at least one of the tables. Of course, an o
join specification (using the “+” operator) may be used to force all rows of one of
3-4 Advanced Topics Guide

Creating tables

the

T
ch

nnot

es
of
 a

 the
.

for
rks
es

rate
 The
Note
ate
tables to be returned, but this requirement could be easily overlooked. Consider
following factors when deciding whether to allow a null value in a column:

• Columns participating in primary keys should always be defined with NO
NULL, since they are required to be populated with unique values for ea
row.

• Foreign keys should generally be defined with NOT NULL. Whenever a
child table is dependent on a parent, the foreign key to the parent table ca
be null, since the existence of a child occurrence without a parent would
violate the dependency rule of the relationship. Only foreign keys to tabl
with optional relationships can be considered as candidates for the use
nulls, to signify that no relationship exists. Also, foreign keys defined with
delete rule of SET NULL must be defined as nullable.

• Use NOT NULL WITH DEFAULT for columns with DATE, TIME, or
DATETIME data types to allow current date and time data to be stored in
field automatically. This is particularly useful for row creation timestamps

• Allow nulls for those columns that will actually have an anticipated need
the unknown or inapplicable meaning of the null value. The null value wo
especially well in numeric fields that may be subjected to aggregation us
such as SUM or AVERAGE.

• Use NOT NULL WITH DEFAULT for all columns not meeting one of the
above criteria.

Example 1
We will carry forward the example ERD used in the previous chapter to demonst
diagramming styles to show the transformation from external to internal schema.
following SQL statements represent the current state of the design at this point.
that a site standard requires base table names to be suffixed with a “_T” to facilit
easy identification.

CREATE TABLE OESYS.CUSTOMER_T (
CUSTOMER_NO DECIMAL(6,0) NOT NULL,
CUST_NAME VARCHAR(45) NOT NULL,
CUST_ADDR1 VARCHAR(35) NOT NULL,
CUST_ADDR2 VARCHAR(35) NOT NULL WITH DEFAULT,
CUST_ADDR3 VARCHAR(35) NOT NULL WITH DEFAULT,
CUST_CITY VARCHAR(45) NOT NULL,
CUST_STATE_CD CHAR(2) NOT NULL,
CUST_ZIP DECIMAL(5,0) NOT NULL WITH DEFAULT)
PCTFREE 10;
CREATE TABLE OESYS.ORDER_T
(ORD_SALES_CENTER_NO DECIMAL(2,0) NOT NULL,
ORD_SEQ_NO DECIMAL(6,0) NOT NULL,
Advanced Topics Guide 3-5

Chapter 3 Internal Schema Creation

t
 of
ORD_CUSTOMER_NO DECIMAL(6,0) NOT NULL,
ORD_PLACED_DATE DATE NOT NULL WITH DEFAULT,
ORD_CUST_PO VARCHAR(35) NOT NULL WITH DEFAULT,
ORD_CUST_PO_DATE DATE NOT NULL WITH DEFAULT,
ORD_STATUS CHAR(1) NOT NULL,
ORD_CHANGED_DATE DATE,
ORD_INVOICED_DATE DATE)
PCTFREE 10;
CREATE TABLE OESYS.ORDER_ITEM_T
(OITM_SALES_CENTER_NO DECIMAL(2,0) NOT NULL,
OITM_SEQ_NO DECIMAL(6,0) NOT NULL,
OITM_LINE_NO DECIMAL(3,0) NOT NULL,
OITM_PRODUCT_NO DECIMAL(9,0) NOT NULL,
OITM_ORDER_QTY DECIMAL(3,0) NOT NULL,
OITM_SHIPPED_QTY DECIMAL(3,0) NOT NULL WITH DEFAULT,
OITM_MEASURE_UNIT CHAR(2) NOT NULL,
OITM_COST_AMT DECIMAL(5,2) NOT NULL,
OITM_SELL_PRICE_AMT DECIMAL(6,2) NOT NULL)
PCTFREE 10;
CREATE TABLE OESYS.PRODUCT_T
(PRODUCT_NO DECIMAL(9,0) NOT NULL,
PROD_DESC VARCHAR(50) NOT NULL,
PROD_DESC_SHORT VARCHAR(15) NOT NULL WITH DEFAULT,
PROD_MEASURE_UNIT_SMALL CHAR(2),
PROD_COST_SMALL_AMT DECIMAL(5,2),
PROD_MEASURE_UNIT_MED CHAR(2),
PROD_COST_MED_AMT DECIMAL(5,2),
PROD_MEASURE_UNIT_LARGE CHAR(2),
PROD_COST_LARGE_AMT DECIMAL(5,2),
PROD_STATUS CHAR(1) NOT NULL,
PROD_ON_HAND_QTY DECIMAL(4,0) NOT NULL WITH DEFAULT,
PROD_AVAIL_QTY DECIMAL(4,0) NOT NULL WITH DEFAULT,
PROD_ON_ORDER_QTY DECIMAL(4,0) NOT NULL WITH DEFAULT)
PCTFREE 10;

Resolving many-to-many relationships
If the ERD contains any many-to-many relationships, these cannot be directly
implemented in the relational model without creating an intermediate table. This
process is called resolving the relationship. The relationships affected are those tha
exist between two tables that have a maximum cardinality of many on both sides
the relationship. These relationships are transformed into two one-to-many
relationships with a new table which serves as a placeholder for the purpose of
representing occurrences of related parent tables. Figure A, below, contains an
3-6 Advanced Topics Guide

Resolving many-to-many relationships

ary
at

ary

,
s

ary

e a
es in
ary
ation
example of resolving a many-to-many relationship between CUSTOMER and
SALESMAN.

Figure 3A - An example of resolving a many-to-many relationship through the
creation of a junction table. The junction table CUST_SLSMAN contains the prim
key of each parent and is also dependent on both. Examples of other columns th
could be contained within the junction table would be
SALESMAN_DATE_ASSIGNED or SALES_YTD_AMT. Columns within the
CUSTOMER and SALESMAN tables remain unchanged. Columns which are prim
keys are underlined, while foreign keys columns are in italics.

Resolving the relationship

1. Create a new table, called a junction table, between the two existing tables. Often
designers will name this table as a conjunction of the names of the two table
involved in the relationship. Figure A shows an example of this by creating a
CUST_SLSMAN junction table between the CUSTOMER and SALESMAN
tables.

2. Add columns to the new table. The required columns are the primary keys ofboth
tables in the relationship. Be sure to include all columns of any composite prim
keys.

3. Define primary and foreign keys for the junction table. The primary key will b
composite key made up of the concatenation of the primary keys of both tabl
the relationship. The foreign keys will be each parent table’s half of the prim
key, which references back to that parent table. This completes the transform

CUSTOMER
Advanced Topics Guide 3-7

Chapter 3 Internal Schema Creation

ith

ink
lled
ship.
ses
e

ll
 in

s.
ng the
g

dent

l
nly

se is
g

ed

 in
ild
er
er.
y
ith
ists.

l be

an be
ile
rity
of the single many-to-many relationship into two one-to-many relationships w
an intermediate junction table.

Now that the many-to-many relationship has been resolved, take a moment to th
about other attributes that may exist within the relationship. This information, ca
junction data, can be added as columns to the new table that resolved the relation
There are often data items that will appear in these tables as the project progres
and user requirements become better known. Two examples of such columns ar
given in Figure A.

Adding referential integrity
Referential integrity is the verification that links between table rows are valid at a
times. These links are the physical implementation of the relationships modeled
the Entity-Relationship diagram during logical design. The links are implemented
through common values contained in primary and foreign keys in the related row
These rows may exist in the same table, or in separate tables. The table containi
primary key is said to be the parent table in the relationship, and the table containin
the foreign key is termed the child table. (Although these terms “parent” and “child”
are widely accepted in relational terminology, they connote a hierarchical, depen
relationship between the tables. Of course, a relationship implemented through
primary and foreign keys in SQLBase, or any other RDBMS, could be of severa
types other than a hierarchy.) It is important to remember that these terms are o
meaningful in the context of a single relationship, since a child table in one
relationship could be a parent table in another relationship, or vice-versa.

By defining a table’s primary and foreign keys when you create the table, SQLBa
able to enforce the validity of relationships within the DBMS itself without requirin
any special coding conventions by the user. For instance, without system-enforc
referential integrity, an order entry program would have to retrieve a row from the
customer table (corresponding to the customer number entered by the operator)
order to verify that the customer actually existed. With referential integrity, the ch
order table contains the customer number as a foreign key to the parent custom
table and the program no longer needs to check for the existence of the custom
When the order row is inserted, the DBMS will realize that the referential integrit
definition requires it to perform a read of the customer table to verify that a row w
a primary key that matches the contents of the foreign key in the order record ex
If this row is found in the customer table, then the order row can be inserted
successfully. Otherwise the insert will fail and an appropriate SQL error code wil
returned to the program to indicate that a referential integrity error occurred.

Sometimes concerns are raised about the possible performance penalties that c
incurred through the use of system defined and enforced referential integrity. Wh
there may be some small minority of cases where user enforced referential integ
3-8 Advanced Topics Guide

Adding referential integrity

lf is

g of
se of

es

is

nt

ips
igner’s
e use
ng

Y
o be

ble.
me
E
ing,

e
h

ted
could be performed more efficiently, in the vast majority of cases, the DBMS itse
able to maintain a higher level of consistency with a lower cost. The two most
important factors contributing to this are its ability to perform integrity checks for all
database accesses, and its ability to always use the most efficient access technique
available to perform the referential checks.

Selection of appropriate referential integrity constraints requires an understandin
the business rules governing the way applications can delete and update data. U
this knowledge allows the database designer to select the appropriate delete rul
from among the three options available in SQLBase. These options are:

• Restrict, which disallows deletion of parent rows if any child rows exist. Th
is the default, and is generally the safest option.

• Set Null, which sets the foreign key values of child rows to null when pare
rows are deleted.

• Cascade, which deletes child rows when parent rows are deleted.

There are also implications of delete rules resulting from the transitive relationsh
between three or more tables that can cause restrictions to be placed on the des
selection. Furthermore, some DML coding options can be constrained through th
of referential integrity. The designer must consider all these factors when selecti
appropriate referential integrity constraints for the database.

Defining keys
Name the columns comprising the primary key of each table in the PRIMARY KE
clause of the CREATE TABLE statement. Since the primary key is also required t
unique, the next step is required before the primary key definition is complete.

Following each table’s CREATE TABLE statement, code a CREATE UNIQUE
INDEX statement that builds a unique index on the primary key columns of the ta
Include only those columns that are in the primary key, and index them in the sa
order as they are specified in the PRIMARY KEY definition clause of the CREAT
TABLE statement. Consider using some indicator (such as a preceding, or follow
“XPK”) in the index name to signify that this is a primary key index, since
inadvertently dropping this index would have detrimental effects on the desired
referential integrity for the database. It is important to remember that both the
PRIMARY KEY clause of the CREATE/ALTER TABLE statement and the CREATE
UNIQUE INDEX are required before SQLBase will consider the primary key
definition for the table to be complete.

At the end of the DDL file (following all CREATE TABLE/INDEX statements), cod
an ALTER TABLE statement that adds the foreign key definitions needed for eac
child table in the database. Adding foreign keys through this ALTER technique
guarantees that each table’s primary key definition is completed (with its associa
index) prior to being referenced in a foreign key clause by some other table.
Advanced Topics Guide 3-9

Chapter 3 Internal Schema Creation

e

Example 2
Continuing from example 1, we now incorporate the required referential integrity
definitions to define the relationships in the ERD. These modifications include th
PRIMARY KEY clause of the CREATE TABLE statement, the CREATE UNIQUE
index statement for each primary key, and finally, the ALTER TABLE statements
needed to define the foreign keys.

CREATE TABLE OESYS.CUSTOMER_T (
CUSTOMER_NO DECIMAL(6,0) NOT NULL,
CUST_NAME VARCHAR(45) NOT NULL,
CUST_ADDR1 VARCHAR(35) NOT NULL,
CUST_ADDR2 VARCHAR(35) NOT NULL WITH DEFAULT,
CUST_ADDR3 VARCHAR(35) NOT NULL WITH DEFAULT,
CUST_CITY VARCHAR(45) NOT NULL,
CUST_STATE_CD CHAR(2) NOT NULL,
CUST_ZIP DECIMAL(5,0) NOT NULL WITH DEFAULT,
PRIMARY KEY(CUSTOMER_NO))
PCTFREE 10;
CREATE UNIQUE INDEX OESYS.XPKCUSTOMER
ON OESYS.CUSTOMER_T
(CUSTOMER_NO)
PCTFREE 10;
CREATE TABLE OESYS.ORDER_T (
ORD_SALES_CENTER_NO DECIMAL(2,0) NOT NULL,
ORD_SEQ_NO DECIMAL(6,0) NOT NULL,
ORD_CUSTOMER_NO DECIMAL(6,0) NOT NULL,
ORD_PLACED_DATE DATE NOT NULL WITH DEFAULT,
ORD_CUST_PO VARCHAR(35) NOT NULL WITH DEFAULT,
ORD_CUST_PO_DATE DATE NOT NULL WITH DEFAULT,
ORD_STATUS CHAR(1) NOT NULL,
ORD_CHANGED_DATE DATE,
ORD_INVOICED_DATE DATE,
PRIMARY KEY(ORD_SALES_CENTER_NO,ORD_SEQ_NO))
PCTFREE 10;

CREATE UNIQUE INDEX OESYS.XPKORDER
ON OESYS.ORDER_T
(ORD_SALES_CENTER_NO,ORD_SEQ_NO)
PCTFREE 10;
CREATE TABLE OESYS.ORDER_ITEM_T (
OITM_SALES_CENTER_NO DECIMAL(2,0) NOT NULL,
OITM_SEQ_NO DECIMAL(6,0) NOT NULL,
OITM_LINE_NO DECIMAL(3,0) NOT NULL,
OITM_PRODUCT_NO DECIMAL(9,0) NOT NULL,
OITM_ORDER_QTY DECIMAL(3,0) NOT NULL,
OITM_SHIPPED_QTY DECIMAL(3,0) NOT NULL WITH DEFAULT,
3-10 Advanced Topics Guide

Adding referential integrity
OITM_MEASURE_UNIT CHAR(2) NOT NULL,
OITM_COST_AMT DECIMAL(5,2) NOT NULL,
OITM_SELL_PRICE_AMT DECIMAL(6,2) NOT NULL,
PRIMARY KEY (ITM_SALES_CENTER_NO,OITM_SEQ_NO,
OITM_LINE_NO))
PCTFREE 10;

CREATE UNIQUE INDEX OESYS.XPKORDERITEM
ON OESYS.ORDER_ITEM_T
(OITM_SALES_CENTER_NO,OITM_SEQ_NO,OITM_LINE_NO)
PCTFREE 10;
CREATE TABLE OESYS.PRODUCT_T (
PRODUCT_NO DECIMAL(9,0) NOT NULL,
PROD_DESC VARCHAR(50) NOT NULL,
PROD_DESC_SHORT VARCHAR(15) NOT NULL WITH DEFAULT,
PROD_MEASURE_UNIT_SMALL CHAR(2),
PROD_COST_SMALL_AMT DECIMAL(5,2),
PROD_MEASURE_UNIT_MED CHAR(2),
PROD_COST_MED_AMT DECIMAL(5,2),
PROD_MEASURE_UNIT_LARGE CHAR(2),
PROD_COST_LARGE_AMT DECIMAL(5,2),
PROD_STATUS CHAR(1) NOT NULL,
PROD_ON_HAND_QTY DECIMAL(4,0) NOT NULL WITH DEFAULT,
PROD_AVAIL_QTY DECIMAL(4,0) NOT NULL WITH DEFAULT,
PROD_ON_ORDER_QTY DECIMAL(4,0) NOT NULL WITH DEFAULT,
PRIMARY KEY(PRODUCT_NO))PCTFREE 10;
CREATE UNIQUE INDEX OESYS.XPKPRODUCT
ON OESYS.PRODUCT_T (PRODUCT_NO)
PCTFREE 10;
ALTER TABLE OESYS.ORDER_T
FOREIGN KEY PLACEDBY (ORD_CUSTOMER_NO)
REFERENCES OESYS.CUSTOMER_T
ON DELETE RESTRICT;
ALTER TABLE OESYS.ORDER_ITEM_T
FOREIGN KEY FKWITHIN (OITM_SALES_CENTER_NO,
OITM_SEQ_NO)
REFERENCES OESYS.ORDER_T
ON DELETE CASCADE,
FOREIGN KEY FKFOR (OITM_PRODUCT_NO)
REFERENCES OESYS.PRODUCT_T
ON DELETE RESTRICT;
Advanced Topics Guide 3-11

bles
ures
ws of
ure
 direct
olating

Advanced Topics Guide
Chapter 4

External Schema
Creation

In this chapter we cover the creation of the initial external schema. This requires
coding the data definition language necessary to build views on the underlying ta
of the internal schema, called base tables. It also means establishing the proced
needed to allow the external schema to evolve as requirements for new user vie
the data become known. Security mechanisms may also be put into place to ins
that all data access is accomplished through the external schema, rather than by
access to base tables. In this way, the base tables are allowed to change while is
the user views from some of the impact of these modifications.
Advanced Topics Guide 4-1

Chapter 4 External Schema Creation

olate
his
ical
ysical
ted
ted by
ata
s, the
tural

plish

ard
 to
sign
s not

ents

ew

ews

act,

mes
ers’

es

Using views as the external schema
In the ANSI/SPARC three schema architecture, the external schema is used to is
the user’s (or program’s) data requirements from the physical implementation. T
isolation is intended to benefit users by allowing them to be unaware of the phys
aspects of the database structure, which were possibly decided for reasons of ph
DBMS and hardware features and limitations. This external schema is also isola
from the conceptual schema so that the user’s data requirements are not impac
any esoteric modeling processes (such as normalization) or organization-wide d
policies that may seem to have unnatural effects on their own data. In other word
goal of the external schema is to allow data to be presented to the user in as na
and simple a way as possible, and to allow for their data requirements to change
dynamically as the business needs evolve. The facility that can be used to accom
the goal of the external schema in RDBMSs, such as SQLBase, is the SQL view.

However, with the current SQL standard used by most RDBMSs, including
SQLBase, the support for this external schema is limited. The current SQL stand
fails to differentiate between conceptual and physical objects, and currently fails
provide an external view mechanism that transcends the ability of the physical de
to impact user views. However, just because these limitations currently exist doe
mean that they will not be solved in the future as the SQL standard evolves. The
relational view mechanism can currently be used to isolate users’ data requirem
from many types of physical changes. Theorists and researchers are currently
working to extend the ability of views to be isolated from physical database
dependencies. Much of the current limitations manifest themselves as certain vi
DML limitations, the most notable being the inability to process any update
commands when a view accesses multiple tables, such as in a join.

Examples of physical schema level database changes that can be ‘hidden’ by vi
include the following:

• Object owners changes. Changing the owner of views can have an imp
however.

• Column names changes. The view definitions can map the old column na
to the new names, thereby making column name changes invisible to us
views.

• Table names changes. These can be handled the same as column nam
mentioned above.

• Table column additions, since these new columns need not be added to
existing views.

• Table column re-ordering. Views can explicitly order their columns
independent of the underlying table’s column ordering.
4-2 Advanced Topics Guide

Using views as the external schema

le’
,

 an
ema.

ble
red

e. By

tive
ng and
urity
t all

 for
ged

nd

he
 to

mb
hey

ns
• Index creation, modification, or removal. Of course, these are also ‘invisib
to base table users. Note that this does not apply to primary key indexes
where changes or deletions can impact referential integrity, which is not
external schema impact but rather has an impact on the conceptual sch

• The combination of two or more tables into one. This assumes that the
primary keys of the two tables are the same.

• The splitting of a table into two or more tables. This can be hidden if the ta
is split so that no view has to access both new tables to access its requi
columns.

This list could expand significantly as new releases of SQLBase become availabl
enforcing the use of the external schema through the view mechanism now, an
organization will be positioned to take advantage of present and future benefits
accruing to the three schema architecture without incurring costly source code
changes.

The primary costs incurred by the extensive use of views fall into two administra
areas. The impact on the database administration area is the overhead of creati
managing the many views that will exist. The second impact is on the task of sec
administration, since more authorizations will need to be managed to ensure tha
database access is through views as opposed to base tables.

The view administration impact can be minimized by adopting good conventions
managing the views. Views should be named in a meaningful manner and catalo
according to the business data they supply. This will allow DBAs to maximize the
reuse of views by facilitating the identification of appropriate existing views as an
alternative to user requests to create new views. In many cases, programmers a
users may be able to locate a view on their own that provides the data they need
without involvement from the DBA.

The major pitfalls to avoid in view administration are the temptation to delegate t
responsibility of creating views too widely and the use of a very few broad views
fulfill all access requests. The first pitfall comes about when the DBA grants the
ability to create views to nearly everyone in an attempt to eliminate the work of
creating views to DBA. While a few trusted individuals can be given this ability (if
they are carefully monitored), when many users have this ability, they may succu
to the practice of simply creating a new view for every new access requirement t
have, without first searching for an existing view to satisfy their requirement.

The second pitfall occurs when the DBA avoids the workload of view creation by
satisfying every view request with the name of a view that mirrors the base table
definition of each table needed by the user. While this action is sometimes
appropriate, the DBA must be willing to create new views when no existing view
definition comes close to satisfying the new request. The DBA needs to find an
appropriate balance between these extremes by comparing the number of colum
Advanced Topics Guide 4-3

Chapter 4 External Schema Creation

es a
w as

ions
ints in
n-

 that

s are
ate

T

 to

hen

m
ibutes

hen
oc
quately

the
onal

r. In

sed
and rows that may be returned from a view with the result set that would exactly
satisfy the user’s request. For example, a rule of thumb could be set that specifi
desired result set being within 75% of the columns and rows returned from a vie
acceptable.

The security administration work involved in enforcing the use of views can be
minimized as well. Techniques such as adopting automated procedures for the
creation and execution of the data control language (DCL, the SQL GRANT and
REVOKE statements) can greatly improve the consistency of security authorizat
as well as ease the workload. Making routine use of these procedures at key po
the application development life cycle lowers the requirement for unscheduled, o
demand security administration.

Creating the initial external schema
To create the initial external schema for a new database, start by creating a view
mirrors each base table in the internal schema. These views can be used by
programmers when they are coding DML statements to initially populate the
database, since they will have no update restrictions placed on them. These view
also likely to be widely used by application programs that perform insert and upd
operations. The name of each view should reflect the fact that it is a view of the
underlying base table, such as PART for the mirror view of the base table PART_
(where the _T signifies a base table).

This mirror view should explicitly name each column in the base table, as opposed
using the ‘SELECT *’ form to implicitly reference table columns, and contain no
WHERE clause that restricts row retrieval. If ‘SELECT *’ is used to implicitly
reference table columns, then application programs may require modifications w
columns are added or dropped from the base table. This is because application
programs must bind attributes returned from SQL statements to application progra
variables and these bind clauses depend on a strict number and ordering of attr
returned from SQL statements.

Additional views can be created for programs which perform database queries w
the data requirements of the program are fully documented. Also, views for ad-h
database users can also be created when their data requirements have been ade
described.

While these CREATE VIEW statements build the initial external schema view of
database, this task is best viewed as a continual evolutionary process. As additi
information requirements become known, additional views will be added to the
external schema to satisfy these requirements in an efficient and flexible manne
order to facilitate the administration of the external schema’s DDL, these views
should be kept together in a subdirectory where they can be conveniently acces
and re-executed, should the need arise.
4-4 Advanced Topics Guide

Example

y the
only
 to
f the
 The
ding

 their

e
No programs or queries should be written which access the base tables, either b
DBAs or anyone else. In order to enforce the use of the external schema as the
means of accessing the database, do not grant authorization on the base tables
anyone other than DBAs. Even the DBAs should exercise restraint in their use o
base tables, using them only for utilities which exclude views from being named.
views themselves can either be granted to PUBLIC or to individual users, depen
on how restrictive the organization’s security policies are.

While these security restrictions may seem excessive to some, it is only through
usage that the goal of using the external schema to isolate user data views from
internal implementation can be approached and eventually achieved.

Example
Carrying forward the example of the previous two chapters, we will now create th
mirror views of the base tables:

CREATE VIEW OESYS.CUSTOMER
AS SELECT
CUSTOMER_NO,
CUST_NAME,
CUST_ADDR1,
CUST_ADDR2,
CUST_ADDR3,
CUST_CITY,
CUST_STATE_CD,
CUST_ZIP
FROM OESYS.CUSTOMER_T;
CREATE VIEW OESYS.ORDERS
AS SELECT
ORD_SALES_CENTER_NO,
ORD_SEQ_NO,
ORD_CUSTOMER_NO,
ORD_PLACED_DATE,
ORD_CUST_PO VARCHAR(35),
ORD_CUST_PO_DATE DATE,
ORD_STATUS CHAR(1),
ORD_CHANGED_DATE,
ORD_INVOICED_DATE
FROM OESYS.ORDER_T;
CREATE VIEW OESYS.ORDER_ITEM
AS SELECT
OITM_SALES_CENTER_NO,
OITM_SEQ_NO,
OITM_LINE_NO,
OITM_PRODUCT_NO,
Advanced Topics Guide 4-5

Chapter 4 External Schema Creation

he

OITM_ORDER_QTY,
OITM_SHIPPED_QTY,
OITM_MEASURE_UNIT,
OITM_COST_AMT,
OITM_SELL_PRICE_AMT
FROM OESYS.ORDER_ITEM_T;
CREATE VIEW OESYS.PRODUCT
AS SELECT
PRODUCT_NO,
PROD_DESC,
PROD_DESC_SHORT,
PROD_MEASURE_UNIT_SMALL,
PROD_COST_SMALL_AMT,
PROD_MEASURE_UNIT_MED,
PROD_COST_MED_AMT,
PROD_MEASURE_UNIT_LARGE,
PROD_COST_LARGE_AMT,
PROD_STATUS,
PROD_ON_HAND_QTY,
PROD_AVAIL_QTY,
PROD_ON_ORDER_QTY
FROM OESYS.PRODUCT_T;
Now we will create two views for known user requirements. The first view is for t
aged open order line inquiry and the second view is for the daily cancelled order
report:

CREATE VIEW OESYS.OPENLINES
AS SELECT
ORD_SALES_CENTER_NO,
ORD_SEQ_NO,
OITM_LINE_NO,
OITM_PRODUCT_NO,
OITM_ORDER_QTY - OITM_SHIPPED_QTY AS ORDER_QTY,
ORD_PLACED_DATE
FROM OESYS.ORDERS,OESYS.ORDER_ITEM
WHERE ORD_SALES_CENTER_NO = OITM_SALES_CENTER_NO
AND ORD_SEQ_NO = OITM_SEQ_NO
AND ORD_STATUS = ‘O’
AND OITM_ORDER_QTY > OITM_SHIPPED_QTY;
CREATE VIEW OESYS.CANCELED_ORDERS
AS SELECT
CUSTOMER_NO,
CUST_NAME,
ORD_SALES_CENTER_NO,
ORD_SEQ_NO,
ORD_CUST_PO,
ORD_CUST_PO_DATE,
4-6 Advanced Topics Guide

Example

T

ORD_PLACED_DATE,
ORD_CHANGED_DATE,
OITM_SELL_PRICE_AMT,
OITM_ORDER_QTY - OITM_SHIPPED_QTY AS OPEN_ORDER_QTY,
OITM_PRODUCT_NO,
PROD_DESC
FROM OESYS.CUSTOMER,OESYS.ORDER,OESYS.ORDER_ITEM, OESYS.PRODUC
WHERE ORD_CHANGED_DATE = CURRENT DATE
AND CUSTOMER_NO = ORD_CUSTOMER_NO
AND ORD_SALES_CENTER_NO = OITM_SALES_CENTER_NO
AND ORD_SEQ_NO = OITM_SEQ_NO
AND ORD_STATUS = ‘C’
AND OITM_ORDER_QTY > OITM_SHIPPED_QTY
AND OITM_PRODUCT_NO = PRODUCT_NO;
Advanced Topics Guide 4-7

Advanced Topics Guide
Chapter 5

Transaction Definition

This chapter:

• Explains the purpose of well-defined transactions:

• Database design benefits

• Data integrity considerations

• Covers the detailed information required for each transaction:

• Identifying information

• Categorical information

• Volume information

• Performance requirements

• Data requirements
Advanced Topics Guide 5-1

Chapter 5 Transaction Definition

nsure

des
 in
 is to

tures
ase.
ed or
re
r for
d is
ill

ization

.
tion
ble to

nd
ate
0 to
letes

e

 to
es the
f the
of the
Benefits of defining transactions
Transaction definitions are required for proper physical database design and to e
data integrity.

Physical database design
The primary goal of physical database design is to ensure that the database provi
the required level of performance. Typically, database performance is measured
terms of transaction performance. So, the objective of physical database design
ensure every database transaction meets or exceeds its performance requirements.

The process of physical database design involves mapping the logical data struc
(entities and relationships in an ER diagram) to the physical constructs of SQLB
For example, entities in the logical database model become one or more cluster
non-clustered SQLBase tables. The design criteria which guides this mapping a
transaction performance requirements and volume statistics. The deciding facto
the designer choosing between the various physical constructs that may be use
their effect on transaction performance. For any particular construct, the effect w
probably enhance the performance of some transactions while degrading the
performance of others. So, physical database design can be viewed as an optim
problem. The goal is to select the SQLBase physical constructs so that every
transaction meets or exceeds its performance requirements.

Hence, well-defined transactions are a prerequisite for physical database design
Without this information, the database designer has no rule to guide in the selec
of physical database constructs. For example, the database designer will be una
determine whether a clustered or non-clustered table will result in better
performance. A similar argument can be made for index selection.

Data integrity
Database transactions usually involve multiple database accesses. For example,
consider the banking transaction of withdrawing $1000 from a savings account a
depositing the funds into a checking account. This transaction entails two separ
database operations: subtracting $1000 from the savings table and adding $100
the checking table. If either one of these database operations successfully comp
but the other does not, then the account balances would be wrong. Both of thes
operations must complete successfully or neither of them should complete
successfully.

Thus, a database transaction is a logical unit of work which causes the database
advance from one consistent state to another. In other words, a transaction mov
database from one state which does not violate the data integrity requirements o
database to another state which does not violate the data integrity requirements
5-2 Advanced Topics Guide

Defining transactions

ssfully
e

t state.

efine
d

an

de

ach

 user

e

staff

fies
nt

re
exist
Base.
database. In addition, a database transaction is a grouping of logically related
database operations so that all of the database accesses should complete succe
or none of them should be applied to the database. Otherwise, if only some of th
database accesses complete successfully, the database is left in an inconsisten

So, in order to ensure the integrity of the database, it is necessary to rigorously d
the database transactions. This chapter describes how to define transactions, an
identifies the information which is typically included in transaction definitions.

Defining transactions
Transaction definitions can take many forms. Some organizations may possess
upper CASE tool with a transaction definition facility as part of a data repository.
Other organizations may choose to define transactions using paper-based or
automated forms. Regardless of the media, all good transaction definitions inclu
several key ingredients. Each of these is discussed below.

Transaction name, number, and description
The first step in defining transactions is to uniquely identify each database
transaction. This is accomplished by assigning a name and unique identifier to e
transaction.

In addition, a short narrative should be composed, referred to as the transaction
description, which describes the transaction in business terms:

• The description should specify what the transaction accomplishes for the
rather than how it is accomplished.

• The description should be understandable by users (it should not includ
technical jargon).

The purpose of transaction names and descriptions is to provide users and MIS
with a means for distinguishing one transaction from another.

Example: Transaction Number: 001

Example: Transaction Name: Transfer Funds

Example: Transaction Description: The Transfer Funds transaction veri
that sufficient funds exist in the account to be debited. If sufficie
funds exist, the transaction debits the account by the specified
amount and credits the other account for the same amount.

In OnLine Transaction Processing (OLTP) systems, the database transactions a
known ahead of time. For these types of systems, a one-to-one relationship will
between the transaction definitions and the actual transactions submitted to SQL
Advanced Topics Guide 5-3

Chapter 5 Transaction Definition

hese
t
ction

nd
e”

ple,

m with
an a

ee of

s at

ore

:

es
k

f this
r

ample,
In Decision Support Systems (DSS), transactions are not known ahead of time. T
systems are characterized by ad hoc and exception reporting. Therefore, it is no
possible to describe each and every transaction. With these systems, the transa
definitions are illustrative of the actual transactions which will be submitted to
SQLBase once the system is implemented. DSS systems require the database
designer to predict the type of transactions which the users will likely run.

Transaction type and complexity
Frequently, transaction definitions also categorize transactions in terms of type a
complexity. For example, transactions may be defined as either “Batch” or “Onlin
and given a complexity rating of either “High,” “Medium,” or “Low.” This
information is useful for producing listings or totals of like transactions. For exam
management may require an estimate of the time required to complete physical
database design. To accomplish this, one might need to know how many low,
medium, and high complex transactions a system has. The database for a syste
a large percentage of high complexity transactions would take longer to design th
system with mostly low complexity transactions.

The complexity rating is a matter of judgement, but should be based on the degr
difficulty the database designer is likely to have meeting the performance
requirements for the transaction (see below). A transaction of high complexity ha
least two of the following characteristics:

• Contains many SQL statements (more than 10).

• Contains WHERE clauses with many predicates (for example, three or m
table joins or subqueries).

• The SQL statements affect many rows (> 100).

On the other hand, a low complexity transaction has the following characteristics

• Contains few SQL statements (three or fewer).

• Contains WHERE clauses with only one or two predicates.

• The SQL statements affect few rows (< 25).

Transaction volumes
Transaction definitions must also include volume information. This typically includ
the average and peak frequency of each transaction. For example, a branch ban
might estimate that the funds transfer transaction described in the introduction o
chapter will occur 50 times an hour with peak loads reaching 65 transactions pe
hour.

The transaction volume statistics are extremely important for physical database
design; consequently, care should be taken to be as accurate as possible. For ex
5-4 Advanced Topics Guide

Defining transactions

ur

o
tems
hould

is
 when
 no

 of

se
arious

ents,
tabase

unds

s.

.

rity,
ll
ts or
the database designer will handle a transaction which occurs 1000 times per ho
quite differently from one that will occur only once per hour.

If the new computer system is replacing an existing system, it may be possible t
derive transaction volumes from the existing system. On the other hand, new sys
rarely duplicate the transaction logic of their predecessors so these differences s
be considered.

Typically, the hardest situation in which to deduce accurate transaction volumes
one in which no automated or manual predecessors exist. These situations occur
organizations enter new lines of business. In this case, volume statistics may be
more than educated guesses.

Transaction performance requirements
The transaction definitions should also document the performance requirements
each transaction. As mentioned in the introduction, the transaction performance
requirements are the basis of physical database design. During physical databa
design, the database designer chooses the physical constructs from among the v
options provided by SQLBase, such that all transactions meet or exceed their
transaction performance requirements. Without specifying performance requirem
the database designer has no means by which to evaluate whether or not the da
performance is acceptable.

Some organizations prefer to specify exact performance requirements for each
transaction. The performance requirements typically take the form of number of
execution seconds. For example, one requirement might state that the transfer f
transaction must complete in three seconds or less.

Other organizations find it easier to define performance requirements in terms of
transaction types and complexity. For example, an organization might require:

• high complexity, online transactions to execute in ten seconds or less.

• medium complexity, online transactions to execute in six seconds or les

• low complexity, online transactions to execute in three seconds or less.

• high complexity, batch transactions to execute in 60 minutes or less.

• medium complexity, batch transactions to execute in 30 minutes or less

• low complexity, batch transactions to execute in 15 minutes or less.

Relative priority
Transaction definitions also should rank each transaction in terms of relative prio
which describes how important to the business one transaction is compared to a
other transactions. Physical database design ensures that each transaction mee
exceeds its performance requirements. Consequently, the transactions must be
Advanced Topics Guide 5-5

Chapter 5 Transaction Definition

tant

er will
.
f

mber

 the
ERT,

ta
ase

uired
 for
mers

o

(non-

se of

s
ne
 an

cy. To
ers
evaluated one at a time. The relative priority of each transaction provides the
sequence in which transactions are evaluated. This ensures that the most impor
transactions receive the most attention.

In addition, during the process of physical database design, the database design
tailor the physical database design so that one given transaction executes faster
Making one transaction go faster frequently negatively affects the performance o
other transactions. Relative priority ranking also provides the basis for any
transaction arbitration scheme.

The ranking can take many forms. For example, some organizations assign a nu
from one (high) to ten (low) to each transaction.

Transaction SQL statements
Each transaction definition must also specify the SQL statements which perform
necessary database operations. These SQL statements are either UPDATE, INS
DELETE or SELECT commands, which are known collectively as SQL DML (da
manipulation language). The SQL statements are required during physical datab
design to forecast the execution times of the transactions. In addition, a detailed
understanding of the database design and significant experience with SQL is req
to accurately code many SQL statements. Therefore, it is sometimes preferable
the database designer to provide the SQL statements for the application program
rather than allowing them to code the SQL themselves. However, the database
designer and the application programmers must coordinate their efforts closely t
ensure that the SQL statements support the program's data requirements.

The transaction definitions should also include, for each SQL statement, a brief
technical) narrative explaining:

• What the command accomplishes

• Why it is required (if it is not obvious)

• Number of rows in the database affected by the command

The number of rows affected means either the number of rows returned (in the ca
a SELECT command), or the number of rows inserted, updated, or deleted. The
performance of any SQL command is dependent on the number of database row
affected. For example, it would take longer to read 10,000 customer rows than o
customer row. Hence, the number of records affected by each SQL command is
important element of physical database design.

Once coded and described, each SQL command should be validated for accura
accomplish this, it will be necessary to construct a small test database. Many us
find it useful to build a SQLTalk script containing all the transactions’ SQL
commands for this purpose.
5-6 Advanced Topics Guide

Defining transactions

n the

need
grams
e will
he

er

Also keep in mind that the DML should be coded against the external, rather tha
internal, schema. The initial external schema created in chapter 4 will probably
contain many of the views needed to support the transactions. Other views may
to be created in order to meet the tailored needs of some transactions. If the pro
are coded directly against the base tables contained in the internal schema, ther
be a greater risk of impacting them during the physical design control phase of t
database design.

Example: The table below shows how the SQL for the funds transf
transaction might appear in a transaction definition.

Rows

SQL Statement Notes

1 select amt from account

where acct_nbr = :DebitAcct

This SQL command retrieves the balance of the debit
account. If it is less than the transfer amount, the program
should report an “insufficient funds” error to the teller.
Also, the SQL statement should use either the RR
isolation level or the SELECT FOR UPDATE command
to ensure that no other transactions withdraw funds from
the debit account while this transaction is in progress.

1 update account

set amt = amt - :TransferAmt

where acct_nbr = :DebitAcct

This SQL command decreases the funds in the debit
account by the transfer amount.

1 update account

set amt = amt +:TransferAmt

where acct_nbr = :CreditAcct

This SQL command increases the funds in the credit
account by the transfer amount.
Advanced Topics Guide 5-7

of

ve

Advanced Topics Guide
Chapter 6

Refining the Physical
Design

In this chapter we re-visit the internal schema created in chapter 3 with the goal
introducing physical database design optimization methods which improve its
performance and capacity. At this point in the database design process, general
guidelines and heuristics are applied to the first-cut physical database design to
produce a better physical database design, or internal schema. Over the years,
database designers have discovered many rules-of-thumb or heuristics to impro
overall database performance. These guidelines are detailed in this chapter.
Advanced Topics Guide 6-1

Chapter 6 Refining the Physical Design

l

often

ption

sical
 a
tions
rther

ral

tical

g
he
r

her
 more
 that
Introduction
In this chapter we present rules which may be used to refine the first cut physica
database design. These rules are typically applied in the following manner:

• The database designer recognizes a scenario in the database which is
the subject of a particular design technique.

• The designer then applies that technique to the database on the assum
that the benefits will be both substantial and required.

As such, these rules do not offer specifically proven benefits for every case, but
represent common database design rules that are usually incorporated into phy
designs by experienced DBAs. You should carefully evaluate every database as
unique application, where some unusual characteristics may cause the assump
on which these rules are based to be violated. For these cases, as well as for fu
refinement of any design, the more rigorous predictive techniques presented in
Chapter 7 may be applied.

These guidelines detailed in this chapter are discussed under the following gene
categories:

• Splitting tables into two or more tables

• Clustering of table rows

• Indexing

• Database partitioning

• Freespace calculation

Splitting tables
One of the most common denormalization techniques that may be applied to a
physical database design is the vertical or horizontal splitting apart of tables. Ver
splitting is the process of moving some of a table’s columns to a new table that has a
primary key identical to that of the original table. Horizontal splitting is the movin
of some of the rows of one table to another table that has a structure identical to t
first. The resulting tables can be managed in ways that tailor each to its particula
performance requirements. The basic motivation for performing a split is that eit
the original table has some performance problem that must be solved, or one or
subsets of the original table has significantly different performance requirements
cannot be met in combination.
6-2 Advanced Topics Guide

Splitting tables

r

ually
of a
 a row

ch to
 I/O
t page
To
e

th for
 when
e
e
ans
 the
re
 any
ary

n

 join
ue
ch
s
se
Vertically splitting large rows
The most common reason for vertically splitting apart a table due to performance
problems is that the row length of the original table is too large. There are two
common situations when the row length is too large: when the row length is large
than the database page size and when a clustered hashed index is used.

When the row length is larger than the database page size
Some entities in the ERD may contain a large number of attributes or a few unus
long attributes. When these entities are converted to a SQLBase table, the size
row can be actually larger than the usable database page size. In this case, when
is inserted into the table, SQLBase will allocate one or more extent pages on whi
store the row (see chapter 8, Database Pages). Consequently, multiple physical
will be required to retrieve the row, one for the base page and one for each exten
(worst case scenario). These multiple I/O operations will degrade performance.
resolve this situation, the table can be vertically split in order to bring the row siz
down to a more manageable size.

SQLBase’s usable page size is approximately 938 bytes. If the average row leng
a table is greater than the usable page size and optimum performance is required
accessing the table, the database designer should split the table into two or mor
tables. The method used to perform the split is simple, since the split is simply th
physical manifestation of performing a relational projection on the table. This me
that some of the columns in the original table will be moved to a new table, while
remaining columns will reduce the row length of the table. The new tables that a
created using this technique have not changed any inter-column relationships in
way (which means each column should still be fully dependent on the entire prim
key), therefore each new table should have an exact copy of the original table’s
primary key as its own primary key.

Determining which columns to place in each table is the most critical decision
affecting the successful application of this technique. This is because the split ca
only result in a benefit to transactions that can satisfy their data requirements by
accessing only one of the resulting tables. Any transactions that must perform a
to reassemble the original row will fail to benefit from the higher blocking factor d
to the additional I/O operations required to read the new table. To determine whi
columns to place in each table, the database designer should analyze the acces
patterns of all high priority transactions and place together in the same table tho
columns which are accessed together the most frequently.
Advanced Topics Guide 6-3

Chapter 6 Refining the Physical Design

d the

ce.
r of
red

er
r by
of
ws

 in an
s

itting
ance

tion

rder
cess
s
e(s)
When using a clustered hashed index
When a table’s data is clustered through the use of a clustered hashed index an
row is too large, it fails to achieve the desired page clustering objective.
Consequently, the number of rows that will be retrieved for each physical I/O
operation may no longer be sufficient to provide adequate transaction performan
This long row length is of concern when transactions commonly access a numbe
rows with each execution, and the rows are physically clustered through a cluste
hashed index on the key that defines this group of rows.

The concept of page clustering or rows per page is the same as that of the blocking
factor for a file in general, where the number of rows that will fit on a page is
described by:

The purpose of splitting a table apart is to attempt to achieve a number of rows p
page that is at least as great as the number of rows that will be retrieved togethe
common transactions. Since the size of the page is fixed by the implementation
SQLBase on each hardware platform, the only way to influence the number of ro
per page is by adjusting the size of the row. Since there is usually no such thing as too
many rows per page, the direction this adjustment takes is to reduce the row size
attempt to increase the number of rows on a page. After eliminating any spuriou
column definitions and reducing the maximum width of VARCHAR and CHAR
columns to a minimum, the only remaining technique is to split the table apart.

Horizontally splitting tables
As defined above, horizontal splitting of a table is the moving of some of the rows of
one table to another table that has a structure identical to the first. Horizontal spl
occurs most often to isolate current data from historical data so that the perform
of accessing current data is increased.

For example, frequently organizations must store several years of order informa
to produce comparison and historical reports. If an organization creates several
hundred thousand orders per year, an order table which contains five years of o
information might exceed one million rows. Such a large table would slow the ac
to current year’s orders, which are probably the most frequently accessed. In thi
situation, the database designer might choose to horizontally split the order tabl
into two tables, one for the current year orders and another for all other orders.

NumberOfRows
pagesize
rowsize
-----------------------=
6-4 Advanced Topics Guide

Splitting tables

ce
 is
f

R

ch
ome
ate

You
ew
 to
ble.

 add

.

ble
w

ules

efine
ill
ans

le,
sed,
atch
en

ding
ed
de
Tailoring performance requirements
Whenever some rows or columns of a table have significantly different performan
requirements than the remainder, splitting the table apart is a viable option. This
worthwhile if there are tangible benefits to be accrued from allowing the portion o
the table with the lowest requirements to accede to that level.

A good example of vertically splitting a table for this purpose is a LONG VARCHA
column that actually contains a binary CAD/CAM drawing which is historical in
nature and rarely accessed by the users. Since this is a lot of data that has a mu
lower usage rate than the remainder of the table, it could possibly be placed in s
lower cost storage medium, such as optical storage, in the future when appropri
hardware and software become available. (Future releases of SQLBase may allow the
database designer to map specific tables to specific physical files and devices.)
can accomplish this by splitting the table apart, with the LONG VARCHAR in a n
table that has the same primary key. This technique allows the LONG VARCHAR
be stored economically (in the future) without affecting the other columns in the ta
If the column remains with the original table and future releases of SQLBase do
this functionality, all existing programs which access the table will have to be
modified before the column may be mapped to these types of “near-line” storage

Referential integrity considerations
When splitting a single table into two or more tables, the primary keys of each ta
should be identical if the table was correctly normalized prior to the split. The ne
tables’ relationships to other tables in the database, therefore, could also be the same
as the original table. However, the DBA should consider the effect of the delete r
in the original table’s relationships when deciding how to define the referential
integrity constraints for the new tables. In some cases, it may be simpler not to d
referential constraints at all, since the actual row deletions from the new tables w
have to be maintained in parallel with the original table through programmatic me
anyway.

An alternative technique is to make the new tables dependents of the original tab
with one-to-one relationships back to the original table. When this technique is u
the new tables will have a foreign key back to the original table that is an exact m
to the primary key of the table. If the delete rule for this foreign key is cascade, th
SQLBase will automatically delete rows of the new tables whenever a correspon
row of the original table is deleted. This eliminates the programmatic work requir
to keep the tables in parallel for deletions, although insertions still have to be ma
explicitly.
Advanced Topics Guide 6-5

Chapter 6 Refining the Physical Design

.

ans
ber

ew
ation

also
the

,
h
inal
ign

ew
ation
 to
onal

 of the
n any
ich

d.

LE

ontain
table
ming
tempt
Splitting apart a table

1. Determine which new tables will contain which columns of the original table

2. Create the new tables with primary keys identical to the original table. This me
that each primary key column must be duplicated in each new table. Remem
to build the primary key index on each new table as well.

3. If you would like SQLBase to handle referential integrity constraints for the n
tables in the same manner as it does the original table as regarding its particip
as a child in relationships, then the foreign key columns for each parent must
be duplicated in each new table. Furthermore, the new tables must contain
FOREIGN KEY clauses that identify the parent table of each relationship.

OR

If you would like to set up the new tables as dependents of the original table
specify the primary key as a foreign key back to the original table. If you wis
SQLBase to handle row deletions from the new tables in parallel with the orig
table, specify CASCADE as the delete rule for this foreign key. No other fore
keys need to be defined in this alternative.

4. If you would like SQLBase to handle referential integrity constraints for the n
tables in the same manner as it does the original table regarding its particip
as a parent in relationships, then you must add a new FOREIGN KEY clause
each child table of the original table that identifies this new table as an additi
parent.

OR

If you have selected the alternative of keeping the new tables as dependents
original table in step 3, then the new tables should not participate as parents i
other relationships. The original table should keep all of the relationships in wh
it is the parent.

5. The new tables may be populated by means of an INSERT statement with a
subselect referencing the columns in the original table that need to be move

6. Drop the unneeded columns from the original table through an ALTER TAB
command.

7. Change any views that access the original table to access whichever tables c
the columns needed by the view. If a view has to be changed from a single
access to a join, determine whether any programs using the view are perfor
updates. These programs will need source code changes to eliminate the at
to update through a view.
6-6 Advanced Topics Guide

Clustering of table rows

e
n
lied to

ex. A
l

s the

ion
ller
ccess

h that

d.

t

s
y
an

se

be
g of

This
 an

le
Clustering of table rows
Controlling the physical storage location of rows within a table using SQLBase is
accomplished through the use of a clustered hashed index. Using this indexing
technique, which is actually not a physical index at all but a method of storing th
underlying subject table, can enhance some aspects of database performance i
particular cases. There are two major reasons why this technique should be app
a table: one allows for faster access to single table rows while the other
accommodates the collocation of table rows that are often accessed together.

Direct random access of rows
Whenever fast direct access to a single row of a SQLBase table is critical, and a
unique key exists to identify that row, you should consider a clustered hashed ind
unique clustered hashed index on the table column that is specified with an equa
predicate in the WHERE clause of a SELECT statement will cause the SQLBase
optimizer to access that row with a hash technique that will, in most cases, allow
retrieval of the page containing the row with a single read operation. This provide
best possible access time for the row within the SQLBase system, exceeding the
capability of B+ index trees.

This technique would be appropriate, for example, when a high volume transact
has to access a large operational master, such as an account table in a bank’s te
system. Since the teller knows the customer account number, the program can a
the account information directly with a single I/O, eliminating not only the need to
traverse a large index tree, but also the I/O and locking overhead associated wit
task. Since many tellers are performing similar transactions simultaneously, the
overall load on the DBMS and disk subsystem is decreased through the use of a
clustered hashed index, while the response time for the transactions is enhance

In order for a table to be a good candidate for this technique, two conditions mus
exist:

• A good primary key must exist that can be fully specified for each acces
request. Since a clustered hashed index does not provide any partial ke
search capability (such as NAME LIKE ‘JO%’), the key must be one that c
be reliably specified in full. Furthermore, this key must also provide
satisfactory mapping to the physical database pages through the SQLBa
hash function. Since the hash function provided with SQLBase has been
designed to give good results for the majority of keys, this will probably
no problem. Chapter 10 provides the details on how to verify the mappin
the hash function for a given key.

• The number of rows in the table must be fairly constant and predictable.
is because the clustered hashed index CREATE statement must include
estimate of the total number of rows that the table will contain. If the tab
Advanced Topics Guide 6-7

Chapter 6 Refining the Physical Design

em,
 row
thod
 may

up,

e.
ly

t is,
mpts
 the

R

 a
 the
 to
ader

he

e of

yway
r of
thin
s,
size varies significantly over time, the benefits of creating the clustered
hashed index may be lost. A possible technique to get around this probl
though, would be to drop and recreate the table and index often, with the
occurrence estimate updated each time the index is recreated. This me
also requires an unload and load of the table as well, and for large tables
be too time consuming.

Clustering rows together
When a fairly small number of rows of a single table are often accessed as a gro
the clustered hashed indexing technique can allow for these rows to be located
physically adjacent to each other. If the rows will all fit on one page, then a query
requesting all of the rows will be satisfied with a single I/O operation by SQLBas
This allows for the maximum database performance to be realized for a common
accessed group of rows.

This technique is sometimes called foreign key clustering because it is often a foreign
key within the table that defines the group of data that should be collocated. Tha
when the value of a foreign key is the same for a group of records, SQLBase atte
to store this group of records in proximity to each other. This foreign key becomes
subject key of the non-unique clustered hashed index that is placed on the table.

A good example of this situation is in the familiar order entry system. The ORDE
and ORDER_ITEM tables in this system are often accessed together, and the
database designer wishes to make this access as quick as possible, by defining
clustered hashed index on the ORDER_ITEM table, with the index column being
ORDER_NO column. This column is the ORDER_ITEM table’s foreign key back
the ORDER table. Since transactions first access the ORDER table to get the he
row for the order, they can then access the ORDER_ITEM table with a WHERE
ORDER_ITEM.ORDER_NO = ORDER.ORDER_NO clause. This will cause
SQLBase to use the clustered hashed index to locate this group of rows within t
ORDER_ITEM table. These rows will (hopefully) all be on one page and can be
retrieved with a single read operation.

An important qualifying requirement for the use of this method is the physical siz
the cluster that will be formed by grouping with the selected foreign key. If this
cluster size is too large, then the grouping will be spread out over many pages an
and the potential benefits of this technique will not be realized. Also, if the numbe
rows within the grouping is large, then the chances of encountering collisions wi
the hashing algorithm increase, causing an increase in overflow page allocation
resulting in degraded performance.
6-8 Advanced Topics Guide

Clustering of table rows

s,

d

y is

 then
offset
e
ly
ned
be
ber
ill

red

n.
x

d
imate
In order to determine the average size of the foreign key grouping in terms of row
the following formula may be used:

The numerator, which is the total number of rows in the table, may be determine
through estimation or through the use of the following query if the table already
exists:

SELECT COUNT(*) FROM tablename ;
The denominator, which is the total number of unique foreign key values, may be
estimated based on the number of rows in the parent table where this foreign ke
the primary key. Alternatively, the following query may be run if the child table
already exists:

SELECT COUNT(DISTINCT ForeignKeyColumnName) FROM tablename ;
This calculation yields the average number of rows for each foreign key group
occurrence.

If the resulting group size is very large (a good rule of thumb is greater than 20),
the table is probably not a good candidate for clustering. The group size may be
somewhat by the row length, however. The smaller the row length, the greater th
group size that can be tolerated. This is because the true measure of how quick
SQLBase will be able to retrieve all the rows in a foreign key grouping is determi
by how many pages are required to store these rows. The following formula can
applied to determine the number of pages which will typically be required (remem
to calculate the correct page size for the implementation platform on which you w
run SQLBase):

If this formula yields a page spread of more than one, overflow will become a
problem and this table is probably not a very good candidate for a hashed cluste
index based on this foreign key.

Creating a clustered hashed table

1. If the table already exists, unload the data and drop the table.

2. Execute the CREATE TABLE command to create the table, along with the
CREATE UNIQUE INDEX statement that completes the primary key definitio
You may omit the CREATE UNIQUE INDEX only if the clustered hashed inde
you will be creating is both unique and based solely on the primary key.

3. Code and execute the CREATE INDEX commands which builds the clustere
hashed index. Make sure that the SIZE clause is included, and that your est
for the number of rows includes enough space for growth that will occur in

grpsize
rows
fkeys
--------------=

pages
grpsize rowlength×()

pagesize
---=
Advanced Topics Guide 6-9

Chapter 6 Refining the Physical Design

f
ons

 this

re-

able
tailed
re
 the
ust

d the

ndex
index
ated

, or
xes.
x and

s

e
ndex,
ates,

ed
n it

at
ny
e
ather,
between database reorganizations. Also, consider allowing for free space o
between 20 and 30 percent which will achieve the minimization of hash collisi
(multiply your final estimate by 1.2 or 1.3 to do this).

4. Recreate any foreign keys in other tables which reference the primary key in
table.

5. Reload the data unloaded in step 1, if any.

Following this procedure, the entire space needed for the table will have been p
allocated within the database.

Indexing
An index in a relational database is a data structure that allows rapid access of t
rows based on the value of data in one or more columns of those rows. (For a de
explanation of SQLBase’s implementation of BTree indexes, see chapter 9). The
are only two reasons to build an index on a relational table. The first is to ensure
uniqueness of the values being indexed, which is why all primary key columns m
have a unique index defined on them. The other reason for creating indexes (an
only reason to create a nonunique index) is to enhance the performance of the
database.

The drawback of indexes is the amount of resources that they consume. Every i
(other than a clustered hashed index) requires disk space for the storage of the
tree structure. Each of these indexes also requires CPU cycles in order to be cre
and maintained. In particular, indexes consume processing time whenever a
transaction performs an INSERT or DELETE operation against an indexed table
performs an UPDATE of a table row column that participates in one or more inde
Exactly how much overhead is created depends on the characteristics of the inde
subject table, but the overhead is not trivial in any case.

The challenge for the database designer is to create indexes only for those case
where the benefits realized from the access time improvements outweigh the
penalties suffered from the overhead of building and maintaining the index. Whil
some scenarios can be identified as potentially good (or bad) candidates for an i
no irrevocable ‘rules of thumb’ exist. For each index that a database designer cre
the costs and benefits should be measured in order to justify the index’s continu
existence. If the designer discovers that an index is no longer worth its cost, the
should be dropped.

As complex as this cost/benefit analysis is, it is further complicated by the fact th
the benefits are not actually within the control of the DBA. In SQLBase (as with a
DBMS implementation using the SQL standard), the decisions controlling how th
database is accessed are not made by the programmer, the user, or the DBA. R
they are made by a software module within the DBMS called the optimizer.
6-10 Advanced Topics Guide

Indexing

ey
ct
d no

r and

re
ted

n

R
index

e

e

ex’s
d
, an

ith

s
n

 the
t

y
Therefore, the indexes which are finally selected by the DBA are subsequently
reviewed through a pre-determined statistical analysis by the optimizer, where th
may be found devoid of value and not used at all. Actually, the optimizer will sele
some indexes for some DML statements, other indexes for other statements, an
indexes for still other statements. For this reason, an accurate evaluation of the
benefits side of the index problem requires a good understanding of the optimize
how to monitor the decisions made by it.

The purpose of this section is to help the designer select possible indexes that a
worth considering within a physical database design. These must then be evalua
for their effectiveness with particular DML statements through an analysis of the
decisions made by the optimizer.

Column cardinality and selectivity factor
The cardinality of a table column is the number of discrete values that the colum
assumes across all rows of the table. As an example, the cardinality of the
EMPLOYEE-SEX column in the EMPLOYEE table is two, assuming that ‘M’ and
‘F’ are the only acceptable values. Another example is the EMPLOYEE-NUMBE
column in the same table, which is the primary key of the table and has a unique
placed on it as the system requires. The cardinality of this column is equal to the
number of rows in the table, since for each row the column must assume a uniqu
value. These two examples illustrate the extreme cases of cardinality that may b
found.

The reason cardinality is important to index design is that the cardinality of an ind
subject columns determines the number of unique entries that must be containe
within the index. In the above example concerning the EMPLOYEE-SEX column
index placed on this single column would only have two unique entries in it, one w
a symbolic key of ‘M’ and one with a symbolic key of ‘F’. Each of these entries
would be repeated many times, since between the two entries all the table’s row
would be accounted for. If there were 100,000 rows in the EMPLOYEE table, the
each index entry would be repeated 50,000 times if the distribution of employees
were equal between the sexes. This reiteration of the same symbolic key causes
index to be unattractive to the SQLBase optimizer and can also have a significan
impact on the efficiency of index operations.

Determining the cardinality of a potential index key is simple if the data is alread
loaded into the subject table. Use the following query to find the cardinality:

SELECT COUNT (DISTINCT key1||key2||...||keyn) FROM tablename ;
In this query, key1 through keyn represent the potential index columns. The count
returned will be the exact cardinality that the index would have if created on
tablename at the current point in time.
Advanced Topics Guide 6-11

Chapter 6 Refining the Physical Design

f a

at is
es a

f the
r, the
ex

s of

g the
e
en
l
rse,

he

self.
f a
ery
, and
 the

ince
d
st
The way that the optimizer considers the effect of cardinality is through the use o
statistic called the selectivity factor. The selectivity factor of an index is simply the
inverse of the combined cardinality of all index columns:

The selectivity factor is critical because this is the criteria used by the SQLBase
optimizer to decide whether an index is acceptable for use in the access path th
built to satisfy the data requirements of a given DML statement. The optimizer us
formula that combines the selectivity factor of the chosen index, along with
information about the index’s width and depth, in order to compute an estimate o
amount of I/O needed for a particular access path. The lower the selectivity facto
lower the resulting I/O estimate will be, which increases the possibility of the ind
being selected for use.

These characteristics of columns and indexes will be used during the description
good and poor index candidates which follows.

Composite indexes
When an index is created on two or more columns, it is called a composite index.
When creating composite indexes, consider the affect that the order of columns
within the index has on performance. The best performance is achieved by placin
column that usually has the most restrictive selection criteria used against it in th
high order index position. If you do not know which column meets this criteria, th
place the column with the highest cardinality first. Following these guidelines wil
result in the lowest possible selectivity factor to be achieved by the index. Of cou
if the intended use of the index is to provide a generic search capability, then the
columns which will be always fully specified must be placed first in the index or t
searching capability will be lost.

One good reason to use composite indexes is to achieve index only access. This is
when all of the data which is required by a query can be found within the index it
A good example is a lookup table that finds tax rates for various county codes. I
composite index is placed on the county code followed by the tax rate, then a qu
that specifies an equality predicate on the county code within the WHERE clause
requests retrieval of the associated tax rate may be completed with an access to
index entry without any access to the page containing the actual row.

Example:

A table is used by transactions to perform a lookup of county tax rates. S
this is done often, the DBA wishes to allow the operation to be performe
with a minimum number of I/O operations. This is the SQL that is the mo
efficient in this case.

SelectivityFactor
1

Cardinality
------------------------------=
6-12 Advanced Topics Guide

Indexing

kup:

p

. One
exed
ce a

aving

nd
 time
• This is the table:

CREATE TABLE COUNTY_TAX
(COUNTY_CODE INTEGER NOT NULL,
TAX_RATE DECIMAL(5,2) NOT NULL)
PRIMARY KEY(COUNTY_CODE);

• This select statement is used by transactions which perform the loo

SELECT TAX_RATE
FROM COUNTY_TAX
WHERE COUNTY_CODE = :county_code;

• This index was required to complete the primary key definition of the
table:

CREATE UNIQUE INDEX XPKCNTYTAX
ON COUNTY_TAX (COUNTY_CODE);

• The DBA realized that adding a new index which includes the
TAX_RATE column, in the low order of the key, would allow the looku
to perform index only access, resulting in an I/O savings:

CREATE UNIQUE INDEX XCNTYTAX
ON COUNTY_TAX (COUNTY_CODE, TAX_RATE);

An alternative to composite indexes is creating separate indexes for each column
advantage is that these separate indexes may be used when processing the ind
columns in a WHERE clause that specifies predicates that are OR’d together, sin
composite index cannot be used in this case. Another advantage is that if all the
columns are indexed separately, then you do not have to concern yourself with h
the leading columns of a composite index always being specified in WHERE
predicates.

Example:

Suppose that the following set of queries access the STUDENT table, a
each query is contained within a number of transactions whose response
is critical. These are the SQL query statements:

SELECT NAME FROM STUDENT
WHERE ID = :id;
SELECT ID FROM STUDENT
WHERE NAME = :name
OR HOME_CITY = :home_city;
SELECT NAME FROM STUDENT
WHERE HOME_CITY = :home_city
AND MAJOR = :major;
SELECT AVG(GPA) FROM STUDENT
WHERE MAJOR = :major;
Advanced Topics Guide 6-13

Chapter 6 Refining the Physical Design

ill
ary

ery
 OR.

der

 4,

 the
e

:

ue
low

o
es.
ent

jects
eed

rcent
• Since ID is the primary key of the STUDENT table, query number one w
never be a problem. A unique index must exist on ID in order for the prim
key definition to be complete.

• A composite index on NAME and HOME_CITY can never be used by qu
number 2, regardless of the column order, since the logical connector is
This statement can only be satisfied by a table scan, or an index merge
between two indexes where the specified predicates occupy the high or
position.

• A composite index built on HOME_CITY followed by MAJOR could be
used by query number 3, but would not be acceptable for query number
since MAJOR is not in the most significant position.

• The following set of indexes could be considered for use by every one of
above queries, and represents the most efficient way to satisfy the abov
queries:

CREATE UNIQUE INDEX XPKSTUDENT
ON STUDENT (ID);
CREATE INDEX XNKSTUNAME
ON STUDENT (NAME);
CREATE INDEX XNKSTUHOME
ON STUDENT (HOME_CITY);
CREATE INDEX XFKSTUMAJOR
ON STUDENT (MAJOR);

Good index candidates
The following list identifies some columns that may make good index candidates

• Primary key columns. By definition, primary key columns must have uniq
indexes placed on them in order for the definition to be complete and al
for the use of referential integrity.

• Foreign key columns. These are usually very good index subjects for tw
reasons. First, they are often used to perform joins with their parent tabl
Second, they can be used by the system for referential integrity enforcem
during delete operations against the parent table.

• Columns that are referenced in WHERE predicates or frequently the sub
of ORDER BY or GROUP BY clauses. Indexes on such columns can sp
up these operations significantly by preventing the creation of an
intermediate result table.

• Any column that contains unique values.

• Columns that are either searched by, or joined with, less than 5 to 10 pe
of all table row occurrences.
6-14 Advanced Topics Guide

Indexing

M,

ed

e
ically

e
rity

dex
sible

drop
date.

 of

f rows
ng
urs
ect

n to
 top
 this
ieved

 the
keys
• Columns that are often the subject of aggregate functions (involving SU
AVG, MIN, and MAX).

• Columns often used for validity editing in programs, where a value enter
by the operator is checked for its existence in some table.

Poor index candidates

Small tables
One common rule is to avoid creating indexes on tables which span less than fiv
pages. The costs associated with creating and maintaining these indexes are typ
greater than the cost of performing a scan of the entire table. Of course, a uniqu
index required to define a primary key in order to provide needed referential integ
is an exception to this rule.

Large batch updates
Tables which experience updates in large batches usually have problems with in
overhead, particularly if the batches update more than 10% of the table. One pos
way to avoid these problems while still experiencing the benefits of indexes is to
all of the indexes on the table prior to the update, then recreate them after the up

Skewness of keys
Another index pitfall is when the index’s key value distribution is significantly
skewed. In this situation, the cardinality of the index will appear to be quite high,
allowing the optimizer to compute a sufficiently low selectivity factor to make use
the index often. In spite of this, the performance results of queries that utilize the
index are often unacceptable. This is because when there is a large percentage o
that have the same value for the index key, the index performance when accessi
these rows is much worse than when retrieving rows whose index key value occ
less often. The following query will show the distribution of index values in a subj
table:

SELECT key1, key2...keyn , COUNT(*) FROM tablename GROUP BY
key1,key2..keyn ORDER BY LastColumnNo
This query creates a report of index keys ordered from those occurring least ofte
those occurring most frequently. If the difference between the occurrences at the
of the list and those at the bottom is several orders of magnitude or greater, then
index is probably going to cause performance problems when the rows being retr
fall into the more often occurring values. The fact that the total cardinality of this
index appears to be acceptable, and therefore its use is considered desirable by
optimizer, makes this an insidious situation. It is only when the skewness of the
themselves is examined that the database designer discovers the performance
penalties that will accrue from the creation of this index.
Advanced Topics Guide 6-15

Chapter 6 Refining the Physical Design

oo

igh

ble

lity.

se
d, the
alue.

ntly

he
n

0

hen

 the
 on

tabase
d
 for
d in
llers

stem.

ses
e
 disk

base
llow
Other poor index candidates
The following column characteristics generally lead to indexes which are either t
expensive to maintain or of little benefit to system performance:

• Low cardinality. These columns make poor index candidates since their h
selectivity factor influences the optimizer to avoid their use. Use of a low
cardinality index would often cause the DBMS to incur more I/Os than a ta
scan, since many pages may be accessed multiple times.

• Many unknown values (nulls). Null values represent a skew in the
distribution of what may otherwise be a column with acceptable cardina

• Frequently changing values. Columns which are frequently updated cau
excessive index maintenance overhead. Each time the column is update
DBMS must delete the old value from the index tree and insert the new v

Also, columns which are updated by transactions that occur very freque
may cause lock contention problems within the index structure. This is
particularly true if the column is a combination of date and/or time, or if t
column is a serially created key value. These situations cause transactio
activity to be concentrated in a narrow section of index values, which
increases the probability of lock contention occurring.

• Excessive length. Single or composite index keys that are longer than 5
bytes will cause the index to grow to a large number of levels unless the
number of rows is low. Since at least one I/O is incurred for each level w
searching the index, this will degrade performance.

Database partitioning
The ability to partition a database across a number of database areas allows for
throughput of the database to be greatly increased. Much of the benefit depends
the way the operating system environment allows SQLBase to manage these da
areas. This varies depending on the platform on which the server is implemente
(such as NetWare, or OS/2). In general SQLBase will create a unique I/O thread
each database area, which allows for a greater level of parallelism to be achieve
the disk subsystem. Whether or not this will create bottlenecks at the disk contro
or the drives themselves depends on the physical configuration of the I/O subsy

The other benefit realized from database partitioning is the ability to have databa
which are greater than the physical size of any individual disk drive. For very larg
databases, there is no alternative to database partitioning since there may be no
drive available which is sufficient to store the entire database on a single drive.

The drawback to partitioned databases is that the physical disk location of a data
may be harder to identify. This becomes even more true if the DBA decides to a
6-16 Advanced Topics Guide

Database partitioning

 by
t

se
AIN

d
en
ase

up,
ails

cify
t no

n any

log
 will

iles, so
.

u are

 the
ase’s
database areas to be shared by different storage groups, which are in turn used
different databases. Monitoring free space in database areas is more difficult tha
monitoring free space on a physical device, and determining the total free space
available to a storage group may involve the examination of a number of databa
areas. Also, the DBA must be careful to maintain synchronization between the M
database, which stores all of SQLBase’s database area extent information, and all of
the databases which are partitioned.

The bottom line to partitioning is that it is the best way to enhance throughput an
capacity in an appropriate operating environment, but it should only be undertak
when the benefits are truly needed. Those DBAs who decide to implement datab
partitioning must be prepared to spend time ensuring that their monitoring, back
and recovery procedures are all up to the task of handling the more complex det
associated with this environment.

When deciding how to partition a database consider the following factors:

• Do not share database areas between databases and logs. Always spe
different storage groups for the data and for the log files, and ensure tha
database areas are shared between these two storage groups.

• Place database areas intended for logs on a different physical device tha
of the database areas which are used for the data storage of tables. If a
database’s data files share a disk drive with their own log files, then the
files may be damaged along with the database in a disk drive failure, and
not exist to perform a full recovery of the database.

• Consider not sharing storage groups between different databases. This
prevents databases from being interspersed in the same database area f
that if a failure occurs, the affected database will be more easily isolated

• If you are implementing database partitions in UNIX raw partitions, make
sure you have a technique developed to monitor space in the partition.

• Do not set a default storage group unless you are absolutely sure that yo
prepared to manage all databases as partitioned.

• The following query may be executed against the MAIN database using
guest/guest account in order to ascertain available free extents in a datab
database areas:

select a.name,b.stogroup,b.areaname,
@trim(c.pathname), c.areasize,
@nullvalue(100*(d.extsize/c.areasize),0)
from syssql.databases a, syssql.stoareas b,
syssql.areas c, syssql.freeexts d
where b.areaname = c.name
and c.name = d.name(+)
and ((a.stogroup = b.stogroup)
Advanced Topics Guide 6-17

Chapter 6 Refining the Physical Design

y to
bles
w for

 be
is

hich

be
he
e

ge of

he

o that
ace
e will

ay
a
.

 page,
an
red to
e
place,
mes
or (a.logstogroup = b.stogroup))
order by 1,2

Free space calculations
SQLBase provides a keyword, PCTFREE, to allow database designers the abilit
tune the amount of available space which is reserved within the data pages of ta
and indexes. Through the judicious use of this parameter, the designer may allo
the growth of the database over a period of time without any degradation in
performance. Following this time period, a reorganization of the database should
performed, marking the beginning of a new time interval for database growth. Th
time interval, which is chosen by the designer, is termed the reorganization frequency.

The key considerations for choosing a reorganization frequency are the rate at w
the database grows and the availability of time in which to perform the
reorganization. If the database grows very slowly, then a great deal of time may
allowed to pass between reorganizations without affecting its performance. On t
other hand, if the database is constantly growing, frequent reorganization may b
required to maintain consistent performance even with a generous amount of
freespace specified. Also, very large databases may take a great deal of time to
reorganize and this time may not be easy to find in the schedule of demand usa
the computer system by the users. Finding the right trade-off between frequent
reorganizations and system availability can exercise the political ability of even t
most organizationally astute DBA.

The purpose of the PCTFREE parameter in the CREATE TABLE statement is to
reserve space in the database page for future growth of rows already allocated t
page. No new row addition will be made to the page if it would cause the free sp
on the page to drop below the PCTFREE value. You can ensure that some spac
remain on a page that will be available for the expansion of its rows.

This expansion can come about in three ways. First, a column of any data type m
be updated with data which is longer than what was previously stored. Second,
column whose value was originally NULL is updated to possess a non-null value
Finally, the DBA may decide to alter a table definition to add new columns to the
table which are then updated with non-null values.

Whenever any of these events occur and cause an existing row to expand on the
there must be sufficient free space on the page in order to avoid the creation of
extent page. Whenever an extent page is created, additional I/O becomes requi
obtain rows which have spilled over onto that page. This additional I/O causes th
performance of the database to degrade. When enough of this activity has taken
with each data page having a string of extent pages connected to it, execution ti
for transactions may be extended by several times their original objective.
6-18 Advanced Topics Guide

Free space calculations

er

s on

0)

,
n the
ith

(10-

cks
e

e.
rm

s
 will
nger.

t
ns
ns
ance
When determining the appropriate values for the PCTFREE specification, consid
the following factors:

• Tables which are read-only require no free space, and neither do indexe
these tables. Specify PCTFREE 0.

• If many table columns are often increased in length, specify a high (30-5
PCTFREE value to accommodate this growth.

• If a table is expected to have columns added to it after its initial creation
specify a high PCTFREE to avoid the creation of many extent pages whe
new columns are added. However, if the new column will be populated w
non-null values only gradually, then specify a medium PCTFREE value
30).

• If transactions are experiencing problems with waiting for locks or deadlo
due to a large number of active rows being located on the same page, th
concurrency for this table may be increased through the PCTFREE valu
Alter the table definition with a high PCTFREE value (80-90), then perfo
a reorganization. The table will now have very few rows on each page
(possibly as few as one), which will decrease the likelihood of page lock
contending with the access of other rows. The downside is that the table
occupy more room on the disk, and any table scan operations will take lo

Following the implementation of the database, the DBA needs to observe its
performance over time to determine if any degradation is being realized prior to
reorganizations. If there is a significant performance drop due to excessive exten
pages being created, then appropriate action should be taken. The reorganizatio
could be done on a more frequent basis. Alternatively, the PCTFREE specificatio
could be increased prior to the next reorganization to stretch the effective perform
life of the database.
Advanced Topics Guide 6-19

 the

esults

Advanced Topics Guide
Chapter 7

Physical Design Control

This chapter describes a technique for performing physical database tuning on a
reiterative basis. The activities involved are:

• Measuring or predicting transaction response times for a given database
design state.

• Making a change to the design of the database in order to improve the
response time of one or more transactions.

• Measuring or predicting the response time for all critical transactions with
new design.

• Deciding whether to accept or reject the database change based on the r
indicated.
Advanced Topics Guide 7-1

Chapter 7 Physical Design Control

 These

he
sion

o

esign
 is not
esign

esign
nts,

mon
ed to

ority

less
Introduction
As explained in chapter 1 of this section, database design is a six step process.
six steps, which correspond to chapters two through seven of this section, are:

1. Build the logical data model, or the conceptual schema, of the ANSI/SPARC
three schema architecture.

2. Convert the logical model to a “first cut” physical database design which is t
internal schema in the ANSI/SPARC three schema architecture. This conver
is accomplished by applying a few simple rules to the standard Entity
Relationship diagram.

3. Define the external schema, or DBMS views.

4. Define the database transactions.

5. Refine the “first cut” physical database design by applying some heuristics t
common situations.

6. Perform physical design control.

Physical design control is the iterative process whereby the physical database d
is adjusted, or tuned, so that the execution time of a database transaction, which
meeting its performance objective, is decreased. The goal of physical database d
is to ensure that every database transaction meets or exceeds its performance
objectives. (In reality, it is sometimes prohibitively costly for every transaction to
meet or exceed its performance objectives. In these cases, the goal of physical d
is to ensure that every high priority transaction meets its performance requireme
and all other transactions do not deviate unacceptably from their performance
requirements.) Consequently, physical design control is complete when every
transaction meets or exceeds its performance objectives.

This chapter presents the procedure of physical design control. In addition, com
tuning scenarios are discussed along with tips and techniques which may be us
speed up specific types of transactions.

The process
The process of physical design control is accomplished in three steps:

1. Determine the execution time of each transaction and locate the highest pri
transaction which is not meeting its performance objectives.

2. Adjust the physical constructs of the database so that the transaction takes
time to execute.
7-2 Advanced Topics Guide

The process

sting
er as

al
scripts

f the
e
ath
pared
ill

es
ase.
ses.

 bit
 This

86/

this
 a

00

e, the

sign
cution
3. Go back to step one, unless all transactions are now performing within their
required response times.

Each of these steps are discussed in the following sections.

Step one
The execution time of individual transactions may be determined by actually
executing the transactions or by estimating the execution time using some foreca
model. The former method is referred to as the “brute force method” and the latt
the “forecast method.”

Brute force method
To apply the brute force method, the database designer must compile the physic
schema and load the database tables with data. Once this is complete, SQLTalk
or application programs may be developed which submit each transaction to
SQLBase and record the execution time.

However, in order for the results to be meaningful, the database size (in terms o
number of rows in each table) must be approximately equivalent to the size of th
production database. This is because the query optimizer chooses the access p
based on statistics kept in the catalog. If the database is relatively small, as com
to the production database, it is likely the access path chosen by the optimizer w
differ from the one which would have been chosen had the transaction been run
against the production database.

Therefore, for the results of the brute force method to be meaningful, data volum
which approach the size of the production database must be loaded in the datab
This fact limits the usefulness of the brute force method to relatively small databa
(Of course, “small” is a relative term. On a 386/33MHz computer running DOS,
small probably means less than 50MB. On a 486/66MHZ computer running a 32
operating system like NetWare, a small database is probably less than 150MB.)
reasoning centers on the time required to process large volumes of data.

For example, consider a 500 megabyte SQLBase NLM database running on a 4
66MHz Compaq SystemPro. It takes several days of processing time just to load a
500 megabyte database on this hardware platform. Furthermore, a database of
size typically contains at least one table with several hundred thousand rows. On
486/66MHz computer, it requires several hours of processing time to build one index
on a table containing several hundred thousand rows. It is not uncommon for a 5
megabyte database to have dozens of tables, each containing several indexes.

Perhaps if the database tables and indexes only have to be loaded or built one tim
logistics and computing time necessary to handle a large database would not be
insurmountable, but this is not the case. As we shall see in step two, physical de
control involves altering the physical constructs of the database to decrease exe
Advanced Topics Guide 7-3

Chapter 7 Physical Design Control

fic
ay

s

empt

tially
r more
eding
 to be
orce

the

and
lied
 disk
ccess
e

time
 to

e

and
rs,

ave

ctions
time. For example, several different indexes may have to be tried before a speci
transaction meets its performance objectives. Similarly, the database designer m
choose to cluster a table on a different key to see if performance increases. To
accomplish this, the table must be dropped, the data reloaded and all the indexe
rebuilt. Sometimes a design iteration may require the data load programs to be
altered. This can occur, for example, if the database was denormalized in an att
to increase the performance of a transaction. Of course, re-coding application
programs may involve an enormous amount of effort.

Consequently, each design iteration in the physical design control process poten
requires the data load procedures to be repeated. On a complex database, ten o
design iterations may be required before all the transactions are meeting or exce
their performance objectives. Hence, the database tables and indexes may have
built ten or more times. Therefore, as stated above, the usefulness of the brute f
method is limited to relatively small databases.

Forecast method
The forecast method is ideally suited for medium to large databases since many
different design strategies may be tried without having to actually load data into
database. This technique involves estimating the execution time of a particular
transaction through the use of some forecast model.

Forecast models typically try to predict how many physical block reads or writes
CPU cycles a specific transaction will consume. These numbers are then multip
by the average execution time of a physical I/O or CPU cycle. For example, most
drives commonly used today in Intel-based database servers have a total data a
time of less than 20 milliseconds. This is the average time required to position th
read/write head on the desired track plus the average rotational delay time (the
required for the desired sector to spin around to the read/write head). According
this model, if a given transaction required 1000 physical I/O, on average the
transaction will execute in twenty seconds (1000 * .02). We are ignoring CPU tim
here for the sake of simplicity. In fact, CPU time is often omitted from forecast
models because CPU time is usually a small percentage of overall transaction
execution time.

Of course, these forecast models are an over-simplification of true performance
overlook many factors such as disk controller caches, operation system file buffe
and database page buffers. However, the measurements are usually sufficiently
accurate for the desired purpose. It is not necessary to know exactly the execution
time of a given transaction. If the forecast is only 50% to 75% accurate, we still h
an adequate measuring rod to perform physical design control. The estimate of
execution time provides a relative measurement, as long as the estimating algorithm
is applied evenly. This relative measure can then be used to identify those transa
which are expected to grossly exceed their performance objectives.
7-4 Advanced Topics Guide

The process

dels
S of

to

ith
 to the
e

or a
plex

ther,

d or
h and

PU
e

f the

y the
ent.

the
same
al
 user
Before the relational model and SQL became the de facto standard, forecast mo
were used almost universally by database designers. This is because most DBM
that time employed a navigational database manipulation language (DML). With
these navigational DMLs, the programmer determined the access path for each
database access. Once the access path is known, it is relatively straightforward
estimate physical I/O. Hence, forecast models were relatively easy to develop.

However, with the rise of the relational DBMS and SQL, forecast models have
become much more difficult to build. This is because SQL is a declarative DML. W
SQL, the programmer does not determine the access path. This task is delegated
query optimizer. So, in order to accurately forecast the number of physical I/O, th
forecaster must first “guess” which access path the query optimizer will employ f
given database operation. The cost model of query optimizers are extremely com
and beyond the reach of most database designers.

The Centura advantage
Fortunately, SQLBase provides an elegant solution to the problem of forecasting
execution time. SQLBase contains a number of features which, when used toge
allow the SQLBase query optimizer to serve as the forecast model.

First, the Explain Plan facility has been enhanced to provide:

• More detailed information describing the access path

• The “cost” of the access path

Consequently, when in “explain mode,” SQL commands are not actually execute
result rows returned. Instead, the query optimizer determines the lowest cost pat
returns a description of that path plus the cost. The cost returned by the query
optimizer is the optimizer’s own projection of the execution time of the SQL
command. The cost is calculated by estimating the number of physical I/O and C
cycles required to actually execute the SQL command based on various databas
statistics. Please refer to section three of this manual for a detailed discussion o
cost.

Since the query optimizer uses current database statistics, care must be taken b
database designer to ensure that these statistics reflect the production environm
Otherwise, the query optimizer might choose a different path or return an
inappropriate cost.

One way to ensure that the query optimizer is using the right statistics is to load
database with production data volumes. However, this approach suffers from the
limitations as the brute force method. Fortunately, SQLBase also provides sever
new commands which allows the database designer to override the statistics with
calculated values.
Advanced Topics Guide 7-5

Chapter 7 Physical Design Control

og as

e
y the

ded.

cess

st of

n is
n is
)

 input

. This

 first

in to
se

may
In SQLBase, all statistics used by the query optimizer are now stored in the catal
columns of the various system tables automatically created and maintained by
SQLBase. In addition, the UPDATE STATISTICS command may be used to stor
user-desired statistics in these columns in order to influence the choices made b
optimizer.

Consequently, the procedure which the database designer should follow when
attempting to use the query optimizer as a forecasting tool is:

• Compile the physical schema DDL.

• For each table and index, estimate the values for the optimizer statistics
which will be stored in the catalog once production data volumes are loa

• Store these user-determined statistics in the catalog using the UPDATE
STATISTICS command.

• Put the database in explain mode using either the sqlexp function or the
SQLTalk command, SET PLANONLY ON.

• Submit SQL commands to SQLBase in the usual way and record the ac
path and cost returned by the query optimizer.

• Calculate the total forecasted cost of the transaction by summing the co
each SQL command in the transaction.

Step two
During step one of physical design control, the execution time of each transactio
determined and the highest priority (during transaction definition, each transactio
ranked in terms of its relative priority and its performance requirements specified
transaction which does not meet its performance objectives is located. Thus, the
to step two is one transaction. The objective of step two is to adjust the physical
constructs of the database so that this transaction’s execution time is decreased
is often referred to as “tuning the schema” for a transaction.

Most database transactions consist of many SQL commands. Consequently, the
task in step two is to determine which of the SQL commands that make up the
transaction are contributing the most to the overall cost of the transaction. The
designer should then focus his attention on these commands first.

Once a specific SQL command is targeted, the database designer may then beg
consider alterations to the physical schema or the SQL syntax which may increa
performance. The general design goal is to reduce the number of physical I/Os
required to satisfy the SQL command. Three fundamentally different alterations
be made to the physical schema:

• Add or change row clustering, primarily via hashing

• Add or change an index
7-6 Advanced Topics Guide

The process

anual.

n

ed by
 one
ta

sical

s the

f a
hich
ns.
 and

ay be
er.
uent
bining
his

e. Of
ns
• Denormalize a table

Similarly, the SQL syntax may be changed in two fundamental ways:

• Restrict the selection criteria

• Replace the SQL command with an equivalent one

Add or change row clustering
The mechanics of the clustered hashed index are covered in chapter 10 of this m
You are encouraged to review this section. In addition, general principles for
determining whether a hashed table will result in improved performance in a give
situation was discussed in the previous chapter.

Also, note that in some circumstances, transaction performance may be increas
unhashing the table and clustering it through a different technique. For example,
could improve performance during table scans for tables which contain static da
(data rows which are never updated or deleted) by unloading the data, physically
sorting the rows in some specific order, and inserting the rows in this specific phy
order.

Add or change an index
Determining the optimal index set for a given database and transaction is perhap
most difficult task the database designer faces and it requires a thorough
understanding of the optimizer. In addition, metrics are presented in the previous
chapter to evaluate the quality of a proposed index as well as guidelines to follow
when creating an index.

Denormalize a table
Denormalizing a database is a common technique to improve the performance o
SQL command. Denormalization refers to the process of converting a database w
is in third normal form to some lower level of normalization for performance reaso
The concepts of first, second, and third normal form are presented in chapter two
you are encouraged to review this material.

While in the majority of situations, the benefits of direct implementation of
normalized data structures outweigh any disadvantages, in a few cases there m
sufficient justification to perform denormalization in a controlled, deliberate mann
For example, whenever many joins will be required across large tables on a freq
basis, the performance penalty of these join operations may be lessened by com
some of the tables or introducing selective data redundancy among the tables. T
denormalization must be done with careful consideration to the costs involved in
working around update and deletion anomalies, performing processing to update
redundant data, and increasing the recurring maintenance costs for the databas
course, the benefits realized from the denormalization include fewer join operatio
Advanced Topics Guide 7-7

Chapter 7 Physical Design Control

more
se,

ata
table
 the

ch
the

ause

tions
e this
RE
s and
 then
the

 the

 in

re

e

e
and fewer foreign keys along with their usual indexes. When these benefits are
critical to the success of the system than the drawbacks of a non-normal databa
then denormalization is done as a part of the physical database design process.

Denormalizing with prime attributes is one common form of denormalization.
This involves redundantly storing a “prime” (meaning not derived or calculated) d
element in both a primary table and a secondary table. The primary table is the
where the data element “belongs” in terms of the normalization rules. By storing
data element on the secondary table, the normalization rules are violated.

For example, consider the query, “display a list of all customer zip codes for whi
there currently exist open leads, and rank the zip codes in descending order by
number of open leads.” The SQL command for this query might be:

SELECT C.ZIP_CODE, COUNT(C.ZIP_CODE)
FROM CUSTOMER C, LEAD L
WHERE L.CUST_ID = C.CUST_ID
AND L.LEAD_STATUS = ‘OPEN’
GROUP BY C.ZIP_CODE
ORDER BY 2 DESC;
Note that the ZIP_CODE of the customer is stored in the CUSTOMER table bec
that is where the attribute belongs. For any one CUST_ID, there exists only one
ZIP_CODE. (We are ignoring here the fact that a company may have many loca
and each location may have a postal and delivery zip code.) However, to execut
query, the LEAD table must be joined with the CUSTOMER table (see the WHE
clause above). If the CUSTOMER table contains several hundred thousand row
at any one point in time there exists only a relatively small number of open leads,
the performance of this query could be significantly increased by denormalizing
LEAD table.

To denormalize the LEAD table to speed up this query, the customer ZIP_CODE
field is redundantly stored in the LEAD table. The new SQL command to produce
same result is:

SELECT ZIP_CODE, COUNT(ZIP_CODE)
FROM LEAD L
WHERE LEAD_STATUS = ‘OPEN’
GROUP BY ZIP_CODE
ORDER BY 2 DESC;
Thus, the join of the CUSTOMER table with the LEAD table is avoided resulting
increased performance of the target query. However, the LEAD table is now not in
third normal form because the ZIP_CODE attribute is not dependent on the enti
primary key of the LEAD table. Presumably, the primary key of the LEAD table is
(CUST_ID, LEAD_NBR). Given this, the ZIP_CODE attribute depends only on th
CUST_ID; regardless of the LEAD_NBR, the customer’s ZIP_CODE remains th
same. Thus, the LEAD table now violates the second normal form rule.
7-8 Advanced Topics Guide

The process

e of
pdate

ER
r

uld
n

ds

n

ner
tion
ams
g to

o

esign
 rule. In

a
re it

rwise

ta and

to-
ith the
Violating the second normal form rule, in this situation, does increase performanc
the target query. However, this increased performance comes at the price of an u
anomaly. We cannot now change the ZIP_CODE of a customer in the CUSTOM
table without changing every lead for that customer. Hence, the update custome
transaction has to be written so that any change of a customer’s ZIP_CODE is
reflected in all leads (otherwise the data in the LEAD and CUSTOMER tables wo
be inconsistent). Denormalizing the LEAD table to speed up the target transactio
also resulted in:

• Decreased performance of the update customer transaction.

• Placing the data integrity of the CUSTOMER and LEAD tables in the han
of the application.

This particular example of denormalization results in an update anomaly. Insertio
and deletion anomalies are also possible. (See C.J. Date, An Introduction to
Database Systems, Addison-Wesley for a detailed explanation of update, insertion
and deletion anomalies.) Every time a table is denormalized, the database desig
must be aware of, and devise a strategy to deal with, update, insertion, and dele
anomalies. In addition, one must rely just a little bit more on the application progr
to enforce the data integrity of the database. If the programs contain bugs relatin
their handling of these anomalies, data integrity will be compromised. For these
reasons, denormalization should only be considered as a last resort. The database
designer should try all other alternatives to speed up the query before resorting t
denormalization.

Further, one should resort to denormalization only in the case when a specific
transaction cannot otherwise meet its performance objectives. Some database d
methodologies suggest that the designer denormalize the database as a general
other words, certain tables are denormalized based on broad guidelines before any
transactions are timed. The table is thus denormalized whether it is needed or not. The
only valid reason to denormalize a table is to achieve increased performance of
given transaction that cannot otherwise be obtained. To denormalize a table befo
has been demonstrated that the transaction performance objectives cannot othe
be met is reckless given the cost of dealing with update, insertion, and deletion
anomalies or a loss in data integrity.

Denormalizing with aggregate data is another common form of
denormalization. This deals with adding aggregate or derived data attributes to
database tables. Aggregate data are data items derived from other lower level da
are frequently required in decision support and executive information systems in
order to satisfy the large degree of summary and exception reporting these type
systems provide.

For example, consider the query “produce a list of salesmen and their total year-
date sales in descending order from the top selling salesman to the salesman w
Advanced Topics Guide 7-9

Chapter 7 Physical Design Control

Most

tire

d

ance
t,

t
e

in:

 is

e
at they
ors
ponse
ed on

each
ay be
 two
d in
ic

least sales.” To produce this report, all orders for the current year must be read.
order entry systems store order data in two tables: the ORDER_HEADER and
ORDER_DETAIL. The ORDER_HEADER table contains data germane to the en
order, such as SALESMAN_ID, SHIPTO_ADDRESS and CUST_ID. The
ORDER_DETAIL table stores information pertaining to one order line item.
Consequently, to produce this report, the ORDER_HEADER table must be joine
with the ORDER_DETAIL table. The SQL statement to produce this report is:

SELECT H.SALESMAN_ID, SUM(D.AMOUNT)
FROM ORDER_HEADER H, ORDER_DETAIL D
WHERE H.ORDER_ID = D.ORDER_ID
GROUP BY H.SALESMAN_ID
ORDER BY 2 DESC;
If there are 50,000 rows in the ORDER_HEADER table and 300,000 rows in the
ORDER_DETAIL table (on average each order has six lines items), the perform
of this query can be significantly improved by adding an aggregate data elemen
TOTAL_ORDER_AMOUNT, to the ORDER_HEADER table. Whenever a row in
the ORDER_DETAIL table is inserted, updated or deleted, the
TOTAL_ORDER_AMOUNT is decremented or incremented appropriately so tha
this summary field contains the total sales amount of the entire order (which is th
sum of all the line items). The SQL command can then be written to avoid the jo

SELECT SALESMAN_ID, SUM(TOTAL_ORDER_AMOUNT)
FROM ORDER_HEADER
GROUP BY SALESMAN_ID
ORDER BY 2 DESC;
Technically, the ORDER_HEADER table is now in violation of the normalization
rules and update, insert, and delete anomalies exist. The create/modify order
transaction must be written so that this total field in the ORDER_HEADER table
maintained as order lines are added, changed, or deleted.

When denormalizing by adding aggregate data to the database, the decision the
designer must make is whether to allow SQLBase or programs to calculate thes
values each time they are needed, or to actually store them in the database so th
can be queried without the overhead incurred from their derivation. The key fact
involved in this decision are the frequency of access for these data items, the res
time required, and the frequency and types of update operations that are perform
the lower level data from which the aggregate data is derived.

Consider the case of the student’s GPA. This information is probably needed for
academic inquiry transaction that the system performs, and these transactions m
executed quite frequently and require a reasonably low response time (probably
seconds or so). The lower level data, which are the grades a student has receive
each course he has taken, could be quite large for a student with a long academ
career. Not only would the on-line inquiry program have to retrieve all this data to
perform the calculation, but the logic needed is also quite complex.
7-10 Advanced Topics Guide

The process

 the
e

e
m

PA.
gn,

e of
ore
ttle
by a

be
d

ales,
nse

ve to
ve its

base.

 that
gn.

e
 the
le to

base
ce of

QL
ase

Furthermore, this grade data is updated infrequently, probably only at the end of
semester. This update could be performed with a mass insert program that can b
designed to perform GPA calculations for students in an efficient manner. On-lin
transactions which perform grade changes are not highly used and can suffer fro
some slower response time while the program is calculating and updating the G
This is an excellent scenario for allowing aggregate data to be placed in the desi
since the benefits realized will outweigh the costs.

The example of a customer’s total sales for a year probably falls on the other sid
the trade-off. This data is usually not used for on-line inquiry transactions, but m
often appears on reports for sales or marketing departments. As such, there is li
benefit from speeding up the derivation of this data. Also, it is easily computable
SQL query which performs a GROUP BY operation. The values from which the
information is derived are the sum of all customer order total sales, which could
frequently updated for active customers. Every order transaction that is processe
through the system would have to perform the updating of the customer’s total s
which would cause overhead in a transaction which probably has stringent respo
time and throughput requirements. When everything is considered, this data item
should not be placed in the customer entity and those programs needing it will ha
pay the performance penalty of performing the aggregation query needed to deri
value.

Each case of aggregate data should be subject to the same level of analysis as
demonstrated previously. Only in those cases where there are clearly significant
benefits from actually storing the derived data should it be maintained in the data
The general rule of thumb should be to eliminate derived data and, as with the
denormalization trade-off, whenever the rule is broken, the results of the analysis
lead to that decision should be thoroughly documented within the database desi

Thus, this form of normalization has the same pitfalls as redundantly storing prim
attributes. However, unlike prime attributes, derived attributes add information to
database. Consequently, denormalizing with aggregate data is perhaps preferab
redundantly storing prime attributes.

Restrict the selection criteria
In addition to changing some physical construct of the physical schema, the data
designer may also change the SQL command in order to increase the performan
a transaction. The first type of change the database designer can make to the S
command is to further restrict the selection criteria. In order to do this, the datab
designer takes advantage of some knowledge of the application in order to add an
additional restriction to the selection criteria.

For example, consider the query, “produce a report of all open orders.” Now also
suppose that:
Advanced Topics Guide 7-11

Chapter 7 Physical Design Control

ar).

ws to

 of
ave

 on

illed

y of
y
n

• Orders are either “open” or “filled.”

• On average, 300,000 orders exist (four years history plus the current ye

The SQL command to produce this report is (we ignore the ORDER_HEADER,
ORDER_DETAIL data structure as it is not required to illustrate the point):

SELECT *
FROM ORDER
WHERE ORDER_STATUS = ‘OPEN’
The optimizer is forced to execute a table scan on a table containing 300,000 ro
satisfy this query. The only index which could be used for this query would be an
index on the ORDER_STATUS attribute. However, this attribute has a cardinality
two (meaning it has two distinct values); hence, an index on this attribute would h
a selectivity factor so high the optimizer would never choose it.

Now suppose that the database designer also knows that:

• On average 240 new orders are added every day.

• 99.9% of all orders are usually filled by 12:00pm the same business day
which they are received or the following day.

• 99.9% accuracy is sufficient for purposes of the report.

The problem is that the optimizer must read 300,000 rows to find the 240 whose
status is “open” (the ones not filled). Since 99.9% of all orders are received and f
on the same business day and the user’s requirements can be met with this
approximation, an index could be placed on the ORDER_DATE attribute and the
query could be rewritten as:

SELECT *
FROM ORDER
WHERE ORDER_STATUS = ‘OPEN’
AND ORDER_DATE IN (SYSDATE, SYSDATE + 1)
Since four years of order history is maintained in the ORDER table, the cardinalit
the ORDER_DATE would be high and the selectivity factor of the index extremel
low. Hence, the optimizer would probably use this new index to read the 240 ope
orders directly.

The point of this example is that the database designer took advantage of some
knowledge of the application to apply a further restriction to the selection criteria
which, because of the nature of the system, produced the identical results. The
implication of this observation is that the database designer must understand the
application or these opportunities will be missed.
7-12 Advanced Topics Guide

The process

 set

r

ce
The
able

able

ses

mand

and
 of a
Replace the SQL command with an equivalent one
SQL is a powerful and flexible database manipulation language; the same result
may be produced with several different SQL commands. A subquery may be
expressed as a join. Several OR predicates may be replaced with one IN list. Fo
example, the following SQL statement:

SELECT * FROM TABLE
WHERE COL1 = ‘A’
OR COL1 = ‘B’
OR COL1 = ‘C’
may be rewritten as:

SELECT * FROM TABLE
WHERE COL1 IN (‘A’,’B’,’C’)
Equivalent SQL commands sometimes produce significantly different performan
results. A SQL command may run much faster than one of its equivalent forms.
reason for the difference in performance is that the SQLBase query optimizer is
to detect certain conditions for which it is able to apply some fast access path
techniques. With other forms of equivalent SQL commands, the optimizer is not
to detect these conditions.

The details of these circumstances require a detailed understanding of the query
optimizer. You are encouraged to review section two of this manual which discus
the SQLBase query optimizer at length. However, in practice, when a given SQL
command is executing too slowly, the database designer should re-code the com
in as many different equivalent forms as possible to see if one form produces a
significantly different performance result. The implication of this is that the better
more experienced the database designer is with SQL, the more equivalent forms
given SQL command the database designer will be able to try.
Advanced Topics Guide 7-13

Advanced Topics Guide
Chapter 8

Database Pages

In this chapter we:

• Introduce the concept of the database page, which is the basic unit of disk
storage used by SQLBase.

• Cover the following database page types in detail:

• Data row pages

• Data extent pages

• Long varchar pages

• Overflow pages

• Index pages

• Control pages

• Discuss SQLBase’s page allocation and garbage collection algorithms.
Advanced Topics Guide 8-1

Chapter 8 Database Pages

). The
/2,
 (or
d

e is
k
ase

 is an

 size
Base
h as
l page
ire one
 page
od if

al page
ge.

or a
sts
Pages and page types
The fundamental data structure of a SQLBase database is the database page. The
SQLBase database file (the .dbs file) is composed of many pages (see Figure A
SQLBase page size is fixed; all pages have the same length. The Windows, OS
Windows NT, and NetWare versions of SQLBase use a page size of 1024 bytes
1K). In most DBMS, database pages are a multiple of 1K to optimize reading an
writing to secondary storage devices. Disk controllers read and write data in blocks
that are usually multiples of 1K. In addition, most operating systems’ file buffers are
multiples of 1K. For example, the default block and cache buffer size for NetWar
4K. If the database page size is equal to, or a multiplier of, this common 1K bloc
size, I/O is optimized since one physical I/O can read or write one or more datab
pages.

Figure 8A - The SQLBase database is a set of 1024-byte pages.

The relationship between the size of the database page and block and file buffer
important consideration in access path selection (which is discussed at length in
chapters 15 through 18). For example, assuming the default block and file buffer
in NetWare, one physical I/O actually retrieves four database pages. Thus, SQL
can retrieve four database pages with one physical I/O for sequential reads (suc
during table scans). This assumes the next physical page is also the next logica
which for sequential reads is reasonable. On the other hand, random reads requ
physical I/O for each logical read request (to retrieve a row). Since one database
can store more than one row, a table scan is a much more efficient access meth
more than just a small percentage of rows is needed.

Each database page is assigned a physical page number which is four bytes long. This
number is assigned sequentially: the first page in the database is assigned page
number one, the second page number two and so on. SQLBase uses the physic
number, along with the page size, to calculate the logical file address of each pa
For example, the page with the physical page number of 10 would begin at byte
number 9,216 (the formula is (n-1)*1024) within the database file and continue f
length of 1024 bytes. This is referred to as the logical file offset. SQLBase reque

. . .

Logical Fi le Offset
0 1023 1024 2047 2048 3071 (N-1)1024 1024N-1

P hy sic a l
P age N o

1

1 024 bytes
total

P hy s ic a l
P ag e N o

2

1024 bytes
tota l

Phy s ica l
Pa ge N o

3

10 24 bytes
total

P hys ica l
P age N o

N

1024 bytes
total
8-2 Advanced Topics Guide

Pages and page types

tion
his
ere
d into

 as
n the
tes

ges
es
l.

s only
row

n of
pages from the operating system by specifying logical file offsets. With the excep
of Unix raw devices, it is the job of the file system and disk controller to convert t
number into a physical storage device and the actual track and sector (block) wh
the database page is stored, using the specific device geometry information code
the driver module supplied by the manufacturer of the disk subsystem.

Database pages are also linked to form lists of pages. These lists are referred to
linked lists. Each page contains a pointer to the next, and sometimes prior, page i
list (see Figure B). The pointer consists of the physical page number and facilita
the sequential access of all the pages within a specific list.

Figure 8B - Database pages are linked together in lists known as linked lists.

Each database page is a member of one page type. The basic page types are data
pages, index pages and control pages. Data pages contain actual table row data.
SQLBase has four types of data pages: row pages, extent page, long varchar pa
and overflow pages. Index pages are used to store B+Tree indexes. Control pag
maintain information for internal purposes such as which pages are empty or ful
Each of these page types is discussed in detail in the following sections.

A database page contains data only for one page type. For example, BTree page
contain data (consisting of symbolic keys) for a particular BTree index. Likewise,
pages only contain data.

A database page also belongs to one and only one group and contains data for only
one group. A group is a database object such as a table or index, and a collectio
pages of different page types. For example, a table is made up of n number of row
pages, extent pages, LONG VARCHAR pages, and control pages.

P hy s ica l
P age N o

N ex t
Pag e

P rio r
P ag e

15 1 2 71

Ph ys ica l
Pa ge N o

N ext
P a ge

P r io r
P ag e

150

P hys ic a l
P age N o

N ex t
P ag e

P r io r
P a ge

27 15
Advanced Topics Guide 8-3

Chapter 8 Database Pages

umber
page

up

e

 The

ge
 page

iable
 row
 page

 type,
ecord

Each database page is also assigned a logical page number. The logical page n
is assigned sequentially within the group: the first page within the group has the
number of 1, the second page in the group 2, and so on.

Figure 8C - All the pages of a specific group form a separate linked list. Each gro
has one page type and stores data only for that page type.

Data pages
As mentioned previously, SQLBase contains four basic types of data pages: row
pages, extent pages, LONGVARCHAR pages, and overflow pages. Each of thes
pages types is discussed in the following sections.

Row pages
When a table row is originally stored in the database, it is stored on a row page.
specific location occupied by a database row on the page is called a slot. The number
of slots that may reside on a page is a function of the size of the rows and the pa
size. SQLBase keeps track of the location and size of each slot within a database
through the use of a slot table. The slot table serves as an index to all the slots
contained within a database page.

Each row page contains a generic page header, row page header, slot table, var
number of slots and a page footer. The slot table grows down the page from the
page header and the slots grow up from the page footer. The freespace within the
is between the slot table and the last slot added (see Figure D).

Page header
The page header is 53 bytes long and contains the physical page number, page
group number, logical page number, next and previous page pointers, and a log r
pointer (see Figure E). The log record pointer points to the record in the log that
contains the before and after image of the page for the last SQL operation that
modified the page.

15

Ne x t
Pag e

Pri o r
Pag e

2 7

Group
N o

Log.

28 2

2 nd pa ge i n the cu st om e r t able

Page
T y pe

1Data

N ex t
Pa ge

Prio r
Pag e

1 50

Gr oup
N o

Log.

2 8 1

Page
Ty pe

1 st p ag e in the cus tom er tabl e

27

N ex t
Page

Pr i or
Pa ge

15

Grou p
N o

Log.

3

3 rd page i n t he c ust om er t able

Page
T y p e

0Data Data
Ptr Ptr P tr
8-4 Advanced Topics Guide

Data pages

ble
the

s in
tent

wed

has a
t bit
f is
Figure 8D - Row pages contain a page header, row page header, slot table, varia
number of slots and a page footer. The free space within a row page is between
last entry in the slot table and the last slot.

Row page header
The row page header is 16 bytes and contains the slot size (the number of entrie
the slot table), available freespace (in bytes) and a pointer to the next (or first) ex
page.

Slot table and slots
Every table row is stored in a separate slot. Each slot contains a row header follo
by the set {column identifier, column length, value} for each non-null (and non-
LONG VARCHAR) column in the row. The row header contains the row serial
number, update serial number, and the number of columns in the row. Each slot
corresponding entry in the slot table. A slot table entry is a two byte field. The firs
is used as an empty or full flag. The bit is on if the slot contains data; the bit is of
Advanced Topics Guide 8-5

Chapter 8 Database Pages

age

nd

 row
igned
pdate
 or
he

ATE/
 lost
 13)

re
 will
the slot is empty. The remaining bits contain the byte offset of the slot within the p
(see Figure E).

Figure 8E - Each table row is stored in a slot. The slot contains the slot header a
the set {column id, length, data value} for each non-null (and non-long varchar)
column.

The row serial number is a unique identifier assigned to each row in a table. The
serial number is assigned sequentially: the first row inserted into the table is ass
the row serial number of one, the second row is assigned two, and so on. The u
serial number is a unique identifier assigned to every row in a common UPDATE
INSERT command. The update serial number is also assigned sequentially: all t
rows updated/inserted with the first UPDATE/INSERT command are assigned an
update serial number of one, all the rows updated/inserted with the second UPD
INSERT command two, and so on. The update serial number is used to prevent
updates with the Cursor Stability and Release Lock isolation levels (see chapter
and infinite looping with UPDATE and INSERT commands.

Consider the SQL UPDATE command:

UPDATE TABLE Y SET X = X + 1 WHERE X > 10;
With this command, if the DBMS did not flag the rows in table y that met the whe
clause condition before the update command began, then the update command

92 0

S lo t 2 (2 0 b yte s)

90 1

27A tl an ta 32G A110Fre d Sm i th

C ol ID

R ow He a d er

R o w S er ia l N b r

U pd a te S e r ial N b r N b r C olu m ns

D a ta

L e ng th

P a ge F oo te r
L o g Po in ter

1 02 1 1 02 4

S lo t 1 (1 0 b yte s)

10 209 2 1

S l ot 3 (40 b ytes)

9 0086 1

E n try 1
9 2 1

En try 2
9 01

E n try 3
8 61

S lo t T a b le

P ag e H e ad e r R ow P a g e H e a de r

P h ys ica l
P ag e N o.

P a ge
T yp e

G rou p
N u m b er

L o g ica l
P ag e N o.

Lo g
P o in ter

P re vio u s
P a g e N o.

N e xt
P a g e No .

S l ot
S ize

F re e
S pa ce

E xten t
P a g e N o .

Freespace
8-6 Advanced Topics Guide

Data pages

ent
ir

rtial
byte

 on
n an
 512
ader

ngly.

d
ial
 row.
 the

 slot

r in

fied
ored in

s

’s
e

ize.

 the
result in an infinite loop. The update serial number is used for this purpose in
SQLBase, which contrasts with some other RDBMSs which disallow the placem
of columns within the WHERE clause of an UPDATE statement which affects the
contents.

Page footer
The page footer redundantly stores the log page pointer. This field serves as a
consistency check and is used during transaction recovery to protect against pa
page writes. Many Intel-based computers traditionally block hard disks with 512
sectors. This means the hard disk controller reads and writes in units of 512 bytes.
However, the SQLBase page size is 1024 bytes. Thus, it is theoretically possible
such a computer for only a portion of a database page to be written to disk (whe
undetected disk error occurs after the first sector is written but before the second
bytes sector is written). Thus, by storing the log page pointer in both the page he
and footer, SQLBase can detect when this situation occurs and respond accordi

Rowid
SQLBase uses a rowid for all external references to table rows. A rowid is compose
of the physical page number, slot number, row serial number and the update ser
number. The physical page number is used to locate the row page containing the
The slot number is used to locate the specific entry in the slot table that contains
offset of the slot (see Figure E).

The slot table/slot data structure is an indirection technique that allows a specific
to move within a page without affecting external references (namely rowids). It is
necessary to relocate slots within a page after the deletion of rows to reclaim
freespace and avoid fragmentation of the page (see page garbage collection late
this chapter).

The row serial number is required to verify the row is actually stored in the speci
slot. Since slots are reused, the row could have been deleted and another row st
the same slot. The row serial number allows SQLBase to determine when a row
pointed to by a rowid has been deleted. Likewise, the update serial number allow
SQLBase to determine when a row referenced by a rowid has been updated by
another user.

Extent pages
Extent pages are extensions to row pages and are used to store some of a table row
columns when all of the columns will not fit in one row page. Columns can becom
displaced in two circumstances, the most common of which occurs when column
values are updated such that the length of the columns increase significantly in s

As mentioned previously, when a table row is originally inserted into a table, all
columns (except LONG VARCHAR columns) are stored in a row page (assuming
Advanced Topics Guide 8-7

Chapter 8 Database Pages

t the

 that
rrent
e

page
row
erved

ytes.
n
38

e,
e
to the
header

 the
.
.

row will fit into one page). However, later the row may be updated resulting in an
increased row length. This can occur, for example, when a column that was null a
time of insertion is updated with a non-null value. When the row is updated such
its length is increased, sufficient freespace may not exist on the row page (the cu
base page) to store the new column values. When this situation occurs, SQLBas
stores the new column values on an extent page.

The second situation which can cause columns to be displaced from their base
occurs when you attempt to insert a row with a row size greater than the usable
page size. Usable page size is the page size minus the sum of the page size res
for later row expansions (through the use of the PCTFREE specification on the
CREATE TABLE statement) and the page overhead. For example, for the NLM
version of SQLBase, the page size is 1024 bytes and the page overhead is 86 b
Consequently, some columns will be displaced from the base page and stored o
extent pages when you attempt to store a row with a row width of greater than 9
bytes, assuming the PCTFREE parameter is zero.

Extent pages, like row pages, contain a page header, row page header, slot tabl
variable number of slots and a page footer. However, the next and previous pag
pointers in the page header are not used; extent pages are linked together and
base page in a separate linked list using the extent page pointer in the row page
(see Figure F).

Figure 8F - Every row page may have up to ten extent pages which are linked to
base row page. Extent pages share the same group number with the base page
Displaced columns are stored in the same slot as the columns on the base page

Base R ow Pages Extent Pages

G roup
N o

Page
T ype

R O W 281

S lot 2

Exte nt
P a ge
5

Gr oup
N o

E X T EN T 15285

S lot 2

Ex tent
Pa ge

Group
N o

E X TE N T15 28 16

S lot 2

E xtent
Page

Gr oup
N o

EX TE N T 28 -16

S lot 2

Ex tent
Page
8-8 Advanced Topics Guide

Data pages

base
o

plit
e or the
 slot

ge.
lue
ase

ent

n a

laced
re

y is

n the

rs

and

pages
802

 in the

w

cess
 on
the
When an update or insert occurs such that the entire row cannot be stored on a
row page, SQLBase searches for the first extent page with sufficient freespace t
contain the entire displaced columns. If no extent page is found which meets this
criteria, SQLBase allocates one new extent page (up to a maximum of ten).

A given column, consisting of the set {column identifier, length, value}, is never s
across pages. The slot in the base page contains no reference to the extent pag
displaced columns. The displaced columns are stored in the same position in the
table in the extent page as the row to which they belong is stored in the base pa
This means that a row’s slot number remains unchanged from the base page va
regardless of how many extent pages it may span. When retrieving a row, SQLB
first retrieves the base page and accesses all columns stored in the slot. If some
columns are displaced, SQLBase searches sequentially through the chain of ext
pages until all displaced columns are found.

Out of extent pages error
The 00802 ROW ISA “Insufficient (data page) Space Available” error occurs whe
given row cannot fit within a row page and ten extent pages have already been
allocated to the row page but none contains sufficient freespace to store the disp
columns. The 00802 error occurs most frequently during update commands whe
many columns in the row were originally inserted with null values. If this situation
occurs infrequently and in conjunction with specific tables, the appropriate remed
simply to reorganize the placement of the table rows on the database pages by
exporting and importing the table. However, if the situation occurs frequently, this
indicates that the nature of the data is such that rows are growing wider at a significant
rate. In this case, the appropriate remedy is to adjust the PCTFREE parameter o
CREATE TABLE statement. The percent free parameter will cause SQLBase to
reserve more freespace for expanding rows.

The 00802 error can also occur during the insertion of rows. If this situation occu
frequently, the average row width is simply too large and the database should be
redesigned. One could define a table with 255 columns and attempt to store 254
characters in each column for a total row width of 65,025 bytes. This insert comm
would exceed the 10,318 total bytes available in the base pages plus ten extent
(computed by multiplying the usable page space, 938, by 11) and result in the 00
error. Because in most environments SQLBase uses 1K pages (the exception is
UNIX implementations of SQLBase, which use a 2K page size), table width should
be kept to less than 938 bytes (usable page space after overhead) to optimize ro
retrieval time.

Effect on performance
Extent pages negatively affect performance by requiring additional page I/O to ac
row data. If a row is stored without the benefit of extent pages (fitting completely
one row page), then the row can be accessed with one physical I/O. However, if
Advanced Topics Guide 8-9

Chapter 8 Database Pages

s may
ly the
xcept
ging

e
either
pages
 row

e and
y
cated

e will

th a
o the
t page.
e,
ting
time
o
page
ill be
be

ot
, or if

list.
ince
ge

ir
 page
cur
 a

er of
base
row is spread over one row page and one or more extent pages then multiple I/O
be required. Since extent pages are allocated on an as needed basis, it is unlike
extent pages for a given row page would be stored in the same physical block (e
following a reorganization). However, it is possible several extent pages all belon
to the same row page are stored in the same physical block.

For example, assume a “narrow” row (meaning one with a row width less than th
usable row size minus reserved space) is inserted into the database and stored
on an existing page with sufficient freespace or a new page which has no extent
allocated at the time of the insert. Now assume that at some later point in time the
is updated with increased column widths which must be stored on an extent pag
that SQLBase allocates a new extent page for this purpose. At this time, it is ver
likely that the pages physically adjacent to the base page have already been allo
for other purposes (such as additional row pages or extent pages for other base
pages). Consequently, the page which SQLBase does allocate for the extent pag
not be physically adjacent to its base page.

On the other hand, consider the following. Assume a “wide” row (meaning one wi
row width greater than the usable row size minus reserved space) is inserted int
database. Also assume the row can be stored on one base page and one exten
Since the row width is greater than the usable row size minus the reserved spac
SQLBase will be forced to store the row on a new page (this is because the exis
page will not contain sufficient freespace to store the row). Consequently, at the
of the insert, both the base page and extent page will be allocated. If the first tw
pages listed in the group’s free extent list are physically adjacent, then the base
and extent page will be collocated. Otherwise, the base page and extent page w
physically stored in separate blocks on the I/O device and two physical I/Os will
required to retrieve the entire row.

One way that this latter situation can occur is if the group’s free extent list does n
contain two free pages and SQLBase must allocate additional pages to the group
some pages have been de-allocated and placed back in the group’s free extent
Conversely, this latter situation cannot occur during a database reorganization s
no other users are connected to the database and thus are not competing for pa
allocations. During a reorganization, SQLBase collocates all row pages with the
respective extent pages. However, it is possible that the row page and its extent
are collocated but not stored in the same physical block. This situation would oc
when the base page was physically adjacent to the extent page but also crossed
block boundary.

In any event, a database with too many allocated extent pages usually results in
decreased performance. A general design goal should be to minimize the numb
extent pages. To accomplish this, the DBA is encouraged to reorganize the data
frequently. In addition, if it is known that most of the rows in a given table will
significantly grow in width over time, then the CREATE TABLE’s PCTFREE
8-10 Advanced Topics Guide

Data pages

se to
to two

ar
har
ontains

al

ch
age

ge
range
s

ase
ith
at
se slot
parameter should be adjusted accordingly. Further, if the average row width is clo
the usable page size, the database designer should consider splitting the table in
tables.

Long varchar pages
SQLBase stores all long varchar column data in long varchar pages. Long varch
pages contain only a page header, page footer and long varchar data. Long varc
pages are chained to the base page by pointers in the base page slots. If a row c
one or more non-null long varchar columns then its slot contains the set {column
identifier, column length required in the base page, first long varchar page physic
page number, last long varchar page physical page number, column size} for ea
non-null long varchar column. Note that the column length required in the base p
is the size of the fields stored in the base page slot which for LONG VARCHAR
columns is always 12 bytes (consisting of the first long varchar page physical pa
number, last long varchar page physical page number, column size). This page
forms a linked list in the usual way, long varchar pages contain next and previou
page pointers in the page header (see Figure G).

Figure 8G - Unlike EXTENT pages, LONG VARCHAR pages are linked to their b
page by pointers in the slots. LONG VARCHAR pages are also linked together w
next and prior pointers. Please note in the enlargement of the base slot above th
displaced columns, those stored on EXTENT pages, are not referenced in the ba
but LONG columns are referenced.

E x te n t P a g es

E n la rg e m e nt

B a se R o w P a g es

S lo t 2

2 7A t la n t a110F r e d Sm it h

C o l I D

D a t a

L e n g t h

Gr oup
No

L O N G 1 0 1 52 8
10 14

-

L O N G V A R C H A R D a t a

Gro up
No

L O N G V A R C H A R D a t a

101 5
L O N G 2 8

1 0 1 4-

L O N G V A R C H A R P ag es

Group
No

RO W 2 81 5

E xt e n t
P a g e

Gr oup
No

Page
T yp e

E X T E N T 1 52 85

S lo t 2

E x t e n t
P a g e

Grou p
No

Page
T yp e

E X T E N T15 28 1 6

S lo t 2

E x te n t
P a g e

Gro up
No

Page
T y pe

E X TE N T 28 -16

Slo t 2

E xte n t
P a g e

R o w H e a d e r

R o w S e r ia l N b r

U p d a te S e r ia l N b r N b r C o l u m n s

S i z e

1 s t : la s t p g

 C o l ID & L e n g t h

9 1 2 1014:10151611
Advanced Topics Guide 8-11

Chapter 8 Database Pages

from
tively
large
 so
te

vy use
y

lumns

r
 long
es. If

tire
 data
54

h a
lready

ow

w

se
n the
nt
e-
). If
The purpose of long varchar pages is to separate and isolate long varchar data
columns of other data types so that the storage of this type of data does not nega
affect the access of the other columns. Long varchar columns are used to store
quantities of unstructured data such textual comments, bitmaps, video clips, and
on. Consequently, one long varchar column, because of its size, will likely satura
many pages. If these columns were stored in row pages, the result would be hea
of extent pages that would decrease performance to columns of all data types. B
storing long varchar columns on separate pages, access to non-long varchar co
is unaffected.

On the other hand, a database access to a long varchar column as well as othe
columns requires at least two physical I/Os (one for the row page and one for the
varchar page). In addition, SQLBase stores only one column on long varchar pag
a column is defined as LONG or LONGVAR but its value is only one byte, an en
long varchar page is used to store this one byte of data. Consequently, the LONG
type should only be used when the values of the attribute are known to exceed 2
characters; otherwise, the VARCHAR or CHAR data type should be used.

Overflow pages
Overflow pages store rows when an overflow condition occurs in conjunction wit
clustered hashed table (see chapter 10). When a row hashes to a page which is a
full, SQLBase stores this row on an overflow page. There are two types of overfl
pages, designated overflow pages and dynamically created overflow pages. All
overflow pages, regardless of type, participate in the same linked list as base ro
pages (see Figure C).

Designated overflow pages
When a CREATE CLUSTERED HASHED INDEX statement is executed, SQLBa
pre-allocates and creates row pages. The number of pages allocated depends o
number of rows declared in the CREATE CLUSTERED HASHED INDEX stateme
and the width of the table (see chapter 10). For every N number of row pages pr
allocated, SQLBase also pre-allocates a designated overflow page (see Figure H
8-12 Advanced Topics Guide

Data pages

se, N

ges

ge.
ed
se

s

is
nal
the clustered hashed index is created on a single number field, N is 100; otherwi
is 10.

Figure 8H - Designated overflow pages are created for every N number of row pa
and participate in the same linked list as the base row pages.

Dynamically created overflow pages
Dynamically created overflow pages are created whenever both of the following
conditions are met:

• A designated overflow page becomes full

• SQLBase attempts to store another row in the designated overflow page

When this situation occurs, SQLBase will dynamically create another overflow pa
This new overflow page is then inserted into the linked list between the designat
overflow page and the next base row page (see Figure I). In this manner, SQLBa
will dynamically create as many overflow pages as is necessary to store the row
which overflow in a given page range.

Figure 8I - SQLBase dynamically creates as many additional overflow pages as
necessary to store the rows which overflow in a given page range. These additio

D es ig na te d
O F P ag e

R o w s w h i ch o ve r flo w i n th is p a ge
ra n g e, a re s to red in the fol lo w in g
de s i gn at ed over flo w p ag e .

R ow s w h ich o ve rfl o w i n th is p ag e
ra ng e, are s tore d in th e fo ll ow in g
de s ig n ate d ove rflo w pa g e .

D e s ig na te d
O ve r flo w P a g e

D yn a m ic al ly C re ate d
O v er f low P a ge
Advanced Topics Guide 8-13

Chapter 8 Database Pages

ge

able:

s the
for the

rches

hen
ot be

r
able,
 data
overflow pages are inserted in the linked list between the designated overflow pa
and the next base row page.

SQLBase follows these steps when attempting to retrieve a row from a hashed t

1. Hashes the key to obtain the target row page number;

2. Retrieves the target row page and searches the slots for the desired row;

3. If the desired row is not found on the target row page, SQLBase then retrieve
designated overflow page (for that page range) and again searches the slots
desired row;

4. If the desired row is not found in the designated overflow page, SQLBase sea
in turn the dynamically created overflow pages.

Hence, too many overflow pages degrades performance. Care must be taken w
choosing a clustered hashed index key to ensure too many overflow pages will n
required for any specific page range (see chapter 10).

Index pages
Index pages contain B+_tree indexes (refer to chapter 9, BTree Indexes, for a detailed
description of B+-trees). Index pages have the same basic organization of all othe
page types. Each index page contains a page header, index page header, slot t
slots and page footer. The page header, slot table and page footer is identical to
pages (see Figure J).
8-14 Advanced Topics Guide

Index pages

ntains

e

 key
ns. In
 be

d
 used.
Figure 8J - Index pages have the same basic layout as row pages: each page co
a page header, index page header, slot table, and multiple slots.

The index page header and slots within an index page differ from data pages. Th
index page header contains the slot size, free space and the level in the index (see
Figure J). The slot contains the slot overhead, one page pointer and one or more
attributes depending on whether the index is created on one or more table colum
the leaf pages, the page pointer points to a data page where the key values may
found. Otherwise, the page pointer points to the next level in the index.

All index pages belong to the same group; however, non-leaf pages are not linke
together. Therefore, the next and prior page pointers in the page header are not
Leaf pages are linked together in the usual way and form what is known as the
sequence set.

P a ge Fo o ter
L og Po i nte r

10 21 1 02 4

S lo t 1 (10 b yte s)

1 02 092 1

S lo t 3 (4 0 b y tes)

8 9 78 58

F reesp ace

E ntry 1
9 2 1

En try 2
8 9 8

E nt ry 3
85 8

Sl o t T ab le

P ag e H ea d e r Ind ex Pa g e H ea d e r

P hys ica l
P ag e N o .

P ag e
T ype

Gro up
N um b e r

L og ica l
P ag e N o .

Lo g
P oin ter

Pre vi ou s
P a ge N o.

N e xt
P a g e No .

Sl o t
S ize

F re e
S pa ce

In d e x
L evel

S lo t O ve rhe a d

P oi n te r Le ng th (1 byte)

K ey Le ng th (1 by te)

K ey O ff set (2 bytes)

7A tl an ta

L en g th

A ttr1

5G u pta

L en gth

Attr2

S l ot 2 (2 3 b y te s)

89 8 9 20

P a g e P o in te r

P a g e Nb r (4 by tes)

S lo t N br (1 byt e)
Advanced Topics Guide 8-15

Chapter 8 Database Pages

out
re
ich is
ps and
p.

tions.

 block,

 or

sing

 the

e file

d,
ay
Control pages
Each SQLBase database contains a number of control pages for a variety of
housekeeping chores. Some of these control pages store various information ab
the database as a whole. For example, the database control block is used to sto
database parameters. Each SQLBase database also has one free extent list wh
used to keep track of un-allocated pages. Other control pages are used for grou
tables. The group extent map is used to track pages allocated to a specific grou
SQLBase also has several types of control pages for each table defined in the
database. Each of these types of control pages is discussed in the following sec

Database control block
The first page of every SQLBase database is referred to as the database control
or DCB. This page contains various database attributes such as:

• SQLBase version number.

• Recovery flag which indicates whether SQLBase shuts down gracefully
not.

• When checkpoints were done.

• Current log file.

• Next log to backup.

• Read-only flag which indicates whether the read-only isolation level is
available.

• Logging flag which indicates whether logging is enabled.

• Log file pre-allocation flag which indicates whether log files are pre-
allocated or not.

• Log file size field, which is maintained through the SET LOGFILESIZE
command and indicates what size log file should be pre-allocated when u
pre-allocation.

• A flag indicating whether the database is read-only, maintained through
SET READONLYDATABASE command.

• The extension size field, maintained through the SET EXTENSION
command, which specifies the disk space increment at which the databas
will grow.

• The log file span limit, maintained through the SET SPANLIMIT comman
which specifies the maximum number of log files that one transaction m
be spread across.
8-16 Advanced Topics Guide

Control pages

T

mber in

ed in

pecific

base
 of

Tree
f

ach
up
tains

er the
ithin

1024
e.
bit is
ge for
e
ed
The
• The checkpoint time interval, maintained through the SET CHECKPOIN
command, which specifies the frequency in minutes between recovery
checkpoint operations.

When a user connects to a SQLBase database, SQLBase checks the version nu
the DCB to verify that a compatible version of SQLBase created the database.
Likewise, the recovery flag and current log file are used to determine whether
SQLBase should initiate crash recovery operations to rollback uncommitted
transactions (see Chapter 14, Logging and Recovery). The remaining fields stor
the DCB are similarly used by SQLBase for various housekeeping functions.

The DCB is also used to store user parameters for the database. Any database s
parameter set by the user and not stored in the sql.ini file is stored in the DCB.

Free extent list
As discussed previously, a SQLBase database file is a collection of pages. Data
pages are either allocated to a group or un-allocated. The free extent list is a set
database control pages which maintain a record of which pages are un-allocated
(“free” for use). This list is physically stored as a B+Tree index (see Chapter 9, B
Indexes) where each node in the index includes the set {page number, number o
contiguous un-allocated pages}.

Group free page list
If a page is not in the free extent list, then it has been allocated to a group. For e
group, a list is maintained of its allocated pages. Like the free extent list, the gro
extent map is physically stored as a BTree index where the node of the index con
the set {page number, number of contiguous allocated pages}.

Group extent map
The Group Extent Map maps logical pages which comprise a group to physical
database pages.

Bitmap pages
SQLBase uses bitmap pages to track which row pages have freespace (rememb
row page header contains the amount of freespace. See Figure E). Each table w
the database has a set of bitmap pages for this purpose. Each of the 8192 bits (
bytes * 8 bits per byte) of the bitmap page (less overhead) maps to one row pag
When the bit is off, this signals the page has room for additional rows. When the
on, the page does not have room for additional rows. There is one bitmapped pa
approximately every 8192 row pages allocated to the table’s group (a bitmap pag
actually cannot track the freespace of 8192 pages since a portion of the bitmapp
page is used for overhead purposes, these details are ignored in this example).
Advanced Topics Guide 8-17

Chapter 8 Database Pages

fter is
ow
tion,
ge is

 count
ge is
ield is
parate

tore:

to the
er for
row
tter

en
se

sses
st row
ce

. If
 field
.

first logical page within the group is a bitmap page and every 8192 pages therea
a bitmap page. As SQLBase inserts, updates and deletes rows from a specific r
page, the freespace field in the row page header is adjusted accordingly. In addi
when the page is 80% full, the corresponding bit in the corresponding bitmap pa
turned on. When allocated space drops to 50% or below, the bit is turned off.

Row count page
In addition to bitmap pages, each table defined in the database contains one row
page. This page contains only one field, the number of rows in the table. This pa
updated whenever rows are inserted or deleted in the table. Consequently, this f
frequently accessed and could become a bottleneck if it were not stored on a se
page.

Table data page
Each table in the database also has one table data page. This page is used to s

• Last row serial number assigned

• Page number of last row page

• Table size in the number of pages (hashed table only)

• Number of overflow pages (hashed table only)

The first two fields are accessed by SQLBase whenever new rows are inserted in
database. The last assigned serial number is used to determine the serial numb
the new row. When a new row is inserted into the table, SQLBase uses the last
page number to quickly locate the last page. The table data page contains the la
two fields only if the table is hashed (is the subject of a clustered hashed index).

Page allocation and garbage collection
The process of allocating new pages and reclaiming space in existing pages wh
rows are deleted is know as page allocation and garbage collection. Each of the
processes is discussed in the following sections.

Page allocation
When SQLBase receives a command to insert a row into a table, SQLBase acce
the corresponding table data page in order to retrieve the page number of the la
page in the linked list. SQLBase then retrieves this page and checks the freespa
field in the row page header to determine if room exists to store this specific row
so, the new row is inserted into the last page in the linked list and the freespace
in the row page header and corresponding bitmap page are updated accordingly
8-18 Advanced Topics Guide

Page allocation and garbage collection

date
the
ssary,
this
en the
 its
ented
t not

xtent
by
. At
w
ever
 are
 then

ing

 not
Base
he

.
led

es.

.

nding
If the last page in the linked list does not contain sufficient freespace to accommo
the new row, SQLBase begins searching each bitmap page in turn, starting with
last bitmap page accessed and wrapping around to the first bitmap page if nece
for an existing row page with its bit turned off. If one is found, SQLBase retrieves
page and checks the freespace remaining in the row. If sufficient space exists, th
row is stored on the page. If sufficient space does not exist, SQLBase continues
search of the bitmap pages. It is also possible for SQLBase to encounter a fragm
page; that is, a page with enough total free space to store the incoming data, bu
enough contiguous free space. In this case, garbage collection is performed to
compact the page and coalesce all of the free space into one chunk (see “Garbage
collection” below for details).

If all bitmap pages are searched and no page is found with sufficient freespace,
SQLBase then checks the free extent list. If un-allocated pages exist in the free e
list, SQLBase allocates a set of pages, known as an extent, to the table’s group
removing them from the free extent list and adding them to the group extent map
this time, SQLBase also updates the appropriate bitmap page and/or creates ne
bitmap pages if necessary. Groups grow in intervals of 10% or five pages, which
is larger. For example, if the group currently consist of 100 pages, 10 new pages
allocated to the group. On the other hand, if the group only contained 40 pages,
the extent would consist of five pages.

If no unallocated pages exist in the free extent list, SQLBase performs the follow
steps:

1. Obtains additional space from the file system. The SQLBase database file is
fixed to a certain size; it grows as additional space is required. When a SQL
database requires additional storage space, additional pages are added to t
database file. This process of adding additional pages to the database file is
resource intensive, increasing response time for currently active transactions
Consequently, pages are not added one at a time but in groups of pages cal
extents. The extent size may be set by the user with the SET EXTENSION
command. For non-partitioned databases, the default extent size is 100 pag

2. Adds extent pages to the free extent list.

3. Removes pages from the free extent list and added to the group extent map

4. Updates the row and freespace field stored in the new page and the correspo
bit in the bitmap page.
Advanced Topics Guide 8-19

Chapter 8 Database Pages

e.

rved

h
nly
Garbage collection
When a row is deleted from a page:

• The utilization bit in the slot table is turned off, indicating that the slot is
available for re-use.

• The freespace value in the row page header is increased by the row siz

• If freespace is now greater than 50% of the usable page size minus rese
space, the corresponding bit in the bitmap control page is turned off.

At the time of the deletion, the slot data is not removed and the page is not
compacted. Slots are reshuffled to free up space when an insert or update (whic
increases the size of the subject row) occurs. In this way, garbage collection is o
performed when needed.
8-20 Advanced Topics Guide

tain

Advanced Topics Guide
Chapter 9

B-Tree Indexes

In this chapter we:

• Introduce the concept of tree structured indexes, particularly the B-Tree
index, a variation of which is used by SQLBase.

• Discuss the general algorithms used to maintain B-Tree indexes.

• Introduce the SQLBase variation of B-Tree indexes, the B+-Tree index, by
contrasting it to the B-Tree index.

• Explain the variations between the algorithms used by SQLBase to main

B+-Trees and the basic algorithms already covered.

• Discuss the unique considerations that apply to SQLBase indexes.
Advanced Topics Guide 9-1

Chapter 9 B-Tree Indexes

s (or
es

uter

ods”

ree

s,
ost

s and

h
are
Introduction
B-Tree indexes have become the de facto standard for random access to record
rows) within a database file. All major RDBMS products use one variety of B-Tre
or another for general purpose indexing. SQLBase uses the B+-Tree variation first
proposed by Knuth in 1973.

Concerning the history of B-Tree indexes, Douglas Comer documents:

The B-tree has a short but important history. In the late 1960s comp
manufacturers and independent research groups competitively
developed general purpose file systems and so-called “access meth
for their machines. At Sperry Univac Corporation H. Chiat, M.
Schwartz, and others developed and implemented a system which
carried out insert and find operations in a manner related to the Bl-t
method. . . . Independently, B. Cole, M. Kaufman, S. Radcliffe, and
others developed a similar system at Control Data Corporation . . .
R. Bayer and E. McCreight, then at Boeing Scientific Research Lab
proposed an external index mechanism with relatively low cost for m
[file] operations; they called it a B-tree. The origins of “B-tree” has
never been explained by the authors. As we shall see, “balanced,”
“broad,” or “bushy” might apply. Others have suggested that the “B”
stands for Boeing. Because of his contribution, however, it seems
appropriate to think of B-trees as “Bayer”-trees.

B+-Tree Before presenting the details of the B+-Tree variation used by SQLBase, it is
necessary for the reader to understand simple binary search trees, multiway tree
B-Trees in general. This chapter presents a general introduction to binary searc
trees, multiway trees, and B-Trees. Following this general introduction, B-Trees
presented along with the SQLBase implementation.
9-2 Advanced Topics Guide

Binary search trees

ng the
node
ows

 factor
s are

ed

,
 can
order
his
Binary search trees
When traversing a binary search tree, the path chosen is determined by compari
target key to the key value stored at each node. If the target key is less than the
key, the left branch is followed. Otherwise, the right branch is chosen. Figure A sh
part of such a search tree and the path taken for the target key “15.”

Figure 9A - This figure shows a portion of a binary search operation. The path
followed for the target key ‘15’ is illustrated with dotted lines.

Each node in a binary search tree contains exactly one key and has a branching
of two: every node contains a maximum of two children. Thus, binary search tree
“tall” trees. The minimum height of a tree containing N records is [log2N]+1. For
example, a tree with only 100 records will have at least seven levels.

When trees are used for index structures, “short” trees are preferable since they
typically exhibit better performance characteristics. This is because typically one
physical I/O is required for every level traversed in the index, and in order to spe
database access times, physical I/O must be kept to a minimum.

Note also that in index structures, a record in a node contains the set {Key Value
Pointer}. The pointer is the physical address in the main file where the key value
be found. Figure A above contains only the key values in the nodes of the tree in
to simplify the illustration. In the remainder of this chapter we continue to follow t
same practice.

4 2

7 8 1
Advanced Topics Guide 9-3

Chapter 9 B-Tree Indexes

gure

r

e

r

tor

ee has

ach
om
s
ce

pace
t,
Multiway trees
Multiway trees are a generalization of the binary search tree data structure. With
multiway trees, each node contains N number of keys. For example, consider Fi
B which illustrates a multiway tree with a node size of 2.

Figure 9B - This figure shows a search tree with two keys and three branches pe
node. The path followed for the target key “15” is illustrated with dotted lines.

Consider the path followed to locate the target key “15.” First, node a, or the root of
the tree, is examined. The target key of “15” is less than “42”, the first key in noda,
so the left most branch is followed. Next, node b is examined. The target key is
greater than “7”, the first key in node b, so the target key is compared to the second
key in node b. Since “15” is less than “24” the middle branch is followed. This
algorithm is repeated until either an exact match is found or a leaf node is
encountered (a leaf node is any node which is the furthest from the root, in othe
words, a leaf node has no child). If a leaf node is examined with no exact match
found, then the target key is not contained within the index.

Multiway trees are generally “shorter” than binary trees since their branching fac
is greater. However, complex algorithms are required to keep multiway trees
“balanced.” In a balanced tree, all leaf nodes appear at the same level, and the tr
the same height regardless of which leaf node is measured. A balanced tree is
desirable since it results in uniform performance.

B-Trees
B-Trees are balanced multiway trees with the following additional key property: e
node need not contain exactly N number of keys. Nodes are allowed to “grow” fr
half full to full. This additional property greatly simplifies the balancing algorithm
and significantly reduces the cost. B-Trees are a classic example of the disk spa
versus performance trade off. Often, as in the case of B-Trees, additional disk s
can significantly increase performance. The rationale used in these cases is tha

42 81

7 24 50 61 95 107

node a

node b node c node d
9-4 Advanced Topics Guide

B-Trees

:

ve:

m the

ds
leaf
nd 2d

more

-Tree

),
rds

each

ode

y

presumably, additional disk space is relatively inexpensive and justified for the
desired increase in performance.

A B-Tree of order d can be defined formally as a tree with the following properties

• Intermediate nodes (meaning nodes which are not leaves or the root) ha

• At least d records (keys) and no more than 2d records (keys);

• At least d+1 children (pointers) and no more than 2d+1.

• The root, unless the tree has only one node, has at least two children.

• All leaf nodes appear at the same level, that is, are the same distance fro
root (meaning the tree is balanced).

The order of a B-Tree
The order of a B-Tree describes the “bushiness” of the tree: the number of recor
stored in each node and consequently the number of child nodes. The root and
nodes are exceptions but all other nodes in a B-Tree of order d have between d a
records and between d+1 and 2d+1 children. For example, a regular node (meaning
one that is not a leaf or root node) in B-Tree of order 10 has at least 11 and not
than 21 children. The lower bound ensures that each node is at least half full;
therefore, disk space is not unnecessarily wasted. The upper bound allows the B
to be mapped to fixed length records in an index file. The order also effects the
performance of the B-Tree index. If the B-Tree gets to “tall” (has too many levels
performance will suffer. Likewise, if the order gets too “wide” (has too many reco
per node), performance will also decline.

Sequencing within a node
In addition to the data structure properties defined in the formal definition above,
node of a B-Tree index also exhibits some sequencing properties. Specifically:

• Within a node of K records, records may be numbered R1, R2, R3, ..., RK and

pointers to child nodes may be numbered as P0, P1, P2, ..., PK. Figure C
illustrates a typical node using these number semantics.

Figure 9C- This figure illustrates a typical node in a BTree index. Note that each n
has K records but K+1 pointers to child nodes.

• Records in the child node pointed to by P0 have key values less than the ke

of R1. Records in the child node pointed to by PK have key values greater than

...P1P0 1R R K PK
Advanced Topics Guide 9-5

Chapter 9 B-Tree Indexes

to
ndom

ot to

may
 a
aves
rch
ed
 be

irst,
t to a
%
 time

ecord

the key of RK. Records in the child node pointed to by Pi (where 0 < i < K)

have key values greater than the key of Ri and less than the key of Ri+1.

Balancing B-Trees
The popularity of B-Tree indexes results from their performance characteristics
which is derived from their balancing algorithms. Records are usually inserted in
and deleted from a database (and therefore an index) in an arbitrary fashion. Ra
insertions and deletions can cause trees to become unbalanced (see Figure D).

Figure 9D - Unbalanced trees have some short and some long paths from the ro
the leaf nodes.

With an unbalanced tree, some leaf nodes are further from the root than others;
consequently, path lengths and ultimately retrieval times vary. Some key values
be located by only visiting a few nodes; other key values may require accessing
great many nodes. Balanced trees, as mentioned previously, are trees whose le
are all the same distance from the root. This characteristic results in uniform sea
paths and thus consistent retrieval times. However, in order to maintain a balanc
tree through random insertions and deletions special balancing algorithms must
employed.

B-Tree balancing algorithms are specially derived to minimize balancing costs. F
B-Tree balancing algorithms confine node changes to a single path from the roo
single leaf. In addition, by utilizing extra storage (where some nodes are not 100
full), balancing costs are also lowered. Since nodes are sometimes not full at the
of an insert, the new record can simply be inserted into the node (therefore no
balancing action must take place). Similarly, when deletes occur, sometimes the
target node contains more than the minimum number of records so, again, the r
is simply deleted. Only when the node contains 2d records (inserts) or d records
(deletes) are balancing steps required.

Lea f Nodes
9-6 Advanced Topics Guide

B-Trees

ure

e
n

 four

s
e node
dded

 into
s four
st
 a new
as a
is
”
parent
Insertions
Figures E, F and G graphically illustrate the classic B-Tree insertion algorithm. Fig
E is the base tree before any insertions. To insert the key “Q” into the B-Tree of
Figure E, the find algorithm is followed to locate the leaf node where the new key
belongs. If we follow this algorithm we discover that node 7 is the node where th
new key belongs. Since this node has only two keys, the new key value of “Q” ca
simply be inserted in the third record.

Figure 9E - This is a B-Tree of order 2, meaning each node has between two and
children.

Figure F is the same tree as Figure E after the key of “Q” has been inserted. Thi
insertion represents the usual case: no balancing steps are required because th
is not full. B-Trees trade extra storage space (when some nodes are not full) for a
performance.

Figure 9F - This is the same B-Tree as Figure E after the key “Q” is inserted.

Let’s examine a more complex example. Suppose we insert the key value of “U”
the same tree. In this case, “U” belongs in node 8; however, this node already ha
keys. In this situation, a “split” must occur. To split a node, the keys with the lowe
values are placed in one node and the keys with the highest values are stored in
node. In addition, the “middle” key is propagated to the parent node and serves
separator. Figure G contains the same tree as Figure F after “U” is inserted. In th
example, the parent node contains free records for additional keys. If the “middle
key cannot be placed in the parent because the parent node is also full, then the

F L

C E G H J M

N

O P W X Y Z

T

node 1

node 2 node 3

node 4 node 6 node 7 node 8node 5

node 5

node 1

node 2 node 3

node 4 node 6 node 7 node 8
Q

F L

C E G H J M

N

W X Y Z

T

O P
Advanced Topics Guide 9-7

Chapter 9 B-Tree Indexes

d the

found

f the
on-leaf

 key

t key

 leaf
y (the

e leaf
 now

ords
e
ode
node is also split. In the worst case, this splitting occurs all the way to the root an
B-Tree grows by one level.

Figure 9G - A representation of the same B-Tree as Figure E after the key “U” is
inserted.

Deletions
The delete algorithm, like the insert, begins with the find or retrieval operation in
order to locate the node which contains the target key. The target node may be
either at the leaf level or at any other level within the tree.

If the target node is a leaf node, the key is simply removed. Since the majority o
keys are stored at the leaf level (because there are many more leaf nodes than n
nodes), most of the time the target node will be found at the leaf level.

If the target node is not a leaf node then the key cannot simply be removed. The
must be replaced with a new “partitioning” key so that future find operations are
guided properly to the child nodes. The general procedure is to replace the targe
with the next highest key value, or what is known as the “successor” key. The
successor key will always be found at the leaf level by traversing the right-most
branch of the tree. Once the successor key is located, it is simply moved from the
node to the target node. In other words, the successor key replaces the target ke
one to be deleted).

In either case, whether the target node is a leaf or not, the above step causes on
node to shrink in size by 1 record. When this occurs, the affected leaf node may
have too few keys, meaning it is less than half full. This situation is termed an
underflow. Two techniques are then used to deal with the underflow condition:
redistribution and concatenation.

If either one of the adjacent siblings of the affected leaf node contain excess rec
(where the nodes are more than half full) then the redistribution technique may b
utilized. Redistribution simply moves keys among one sibling node, the affected n
and the parent such that the underflow condition is remedied.

Q

F L

C E G H J M

N

T

O P

X

Y Z

U W
node 5

node 1

node 2 node 3

node 4 node 6 node 7 node 8

node 9
9-8 Advanced Topics Guide

B-Trees

ess
ves

root.
ne

des

ts. In
.

ce,
tly,
node.

ight
f the
arget
ey is
 for a

heir
he I/
On the other hand, if neither of the affected leaf node’s adjacent nodes have exc
records, then the concatenation technique must be applied. Concatenation invol
merging nodes and is, in effect, the opposite of the splitting operation used in the
insertion algorithm. Like splits, concatenations may propagate all the way to the
However, in this case, if the propagation travels to the root, the tree shrinks by o
level (rather than growing by one level as with splits).

Detailed examples of the deletion algorithm may be found in Comer, Smith and
Barnes, Knuth, as well as any introduction text to index organizations. Wirt provi
sample routines programmed in Pascal.

B-Tree operation costs
Knuth presents a detailed analysis of B-Tree retrieval, insertion and deletion cos
the following sections we present a simplified model of B-Tree operational costs

Retrieval costs
If we assume each node in a B-Tree is mapped to a block on a physical I/O devi
then each node visited in a find operation requires one physical I/O. Consequen
retrieval cost is proportionate to the number of nodes visited to locate the target

The number of nodes visited during the find operation is directly related to the he
of the B-Tree since most nodes will exist at the leaf level. In other words, most o
time, the find operation will traverse the tree all the way to the leaves before the t
key is located. Hence, the number of physical I/Os required to locate the target k
approximately equal to the height of the tree. Knuth and others have shown that
B-Tree of order d with n total keys:

Thus, the cost of the find operation grows as the logarithm of the total number of
keys. The following table shows how efficient B-Trees are in terms of I/O due to t
logarithmic cost function, since the height of the index is generally equivalent to t
Os required to locate a leaf entry:

Nbr Keys =>
Node Size

1K 10K 100K 1M 10M

10 3 4 5 6 7

50 2 3 3 4 4

100 2 2 3 3 4

height
d

log
n 1+

2

 ≤
Advanced Topics Guide 9-9

Chapter 9 B-Tree Indexes

 in
ved
 is

tion,

 for

o one
nt
ext
 to

ex
other

sued

rows
Even with 1 million keys, one can locate a target key within a B-Tree of order 50
only four physical I/Os. In fact, Knuth and others show that this cost can be impro
upon in practice by some simple implementation adjustments. The average cost
somewhat less than three physical I/Os.

Insertion and deletion costs
Both the insertion and deletion algorithms begin with the find operation.
Consequently, insertion and deletion cost is a superset of retrieval costs. In addi
when a key is inserted or deleted into the tree, in the worst case splitting or
concatenation continues up the tree to the root. Therefore, maximum physical I/O
an insertion or deletion is double that of the find operation.

B+-Trees
As we have shown, B-Trees offer near optimal performance for random access t
record. However, sequential processing using a standard B-Tree is both inefficie
and difficult. After locating the first record using the find operation, to locate the n
sequential record may require traversing from the leaf to the root and back down
another leaf. Thus, in the worst case the cost of the next operation is:

For example, consider the following SQL SELECT statement:

SELECT * FROM CUSTOMER WHERE ID=1234;
This SQL statement retrieves only one row; consequently, a standard B-Tree ind
provides efficient random access to this one row. On the other hand, consider an
SQL SELECT statement:

SELECT * FROM CUSTOMER ORDER BY ID;
Unlike the first SQL statement, this SQL statement retrieves all customers in
sequence by the ID attribute. To satisfy this query, one find operation would be is
to locate the first customer followed by a find next operation for every customer
stored in the customer table. Since the customer table could contain millions of
and each find might require MaxCostOfNext (as defined above) physical I/Os, the
cost of processing this query using the standard B-Tree would be quite large.

150 2 2 3 3 4

Nbr Keys =>
Node Size

1K 10K 100K 1M 10M

MaxCostOfNext
d

nlog=
9-10 Advanced Topics Guide

B+-Trees

cess

nd

dex

e set.

ntry

ance

g: at
B+-Trees are derived from the standard B-Trees. They add efficient sequential
processing capabilities to the standard B-Tree yet retain the excellent random ac
performance.

Before defining B+-Trees, it is necessary to define two terms:

• “Index nodes” refers to all nodes not at the leaf level, meaning the root a
all subsequent levels excluding the leaf level;

• “leaf Nodes” or “leaves” are all nodes at the leaf level.

B+-Trees differ from B-Trees in that (see Figure H):

• All pointers to the main file are removed from the index nodes;

• All key values are stored in leaves regardless of whether they exist in in
nodes;

• Leaf nodes are chained together into a linked list known as the sequenc

Figure 9H - A B+-Tree is composed of index nodes and leaf nodes that are linked
together in a linked list known as a sequence set.

These structural differences result in several key implications:

• All find operations must travel to the leaf level to obtain the pointer to the
main file; thus, the index nodes serve as a “road map” to the appropriate e
point to the sequence set.

• Since pointers to the main file are removed from the records in the index
nodes, more records can be stored in the index nodes; thus, the perform
is on a par with that of B-Trees.

• Sequence set provides an efficient mechanism for sequential processin
most the cost of the next operation is one I/O.

Index N odes

Leaves
Advanced Topics Guide 9-11

Chapter 9 B-Tree Indexes

s
ex

d

he

asing

he

he
mber

f
vings
key
ule,
, the
s.

 Pages).
Prefix B+-Trees
Prefix B+-Trees are a slight variation of B+-Trees. Since the index nodes only serve a
a road map to the leaves and all operations must travel to the leaf nodes, the ind
nodes do not have to store the full key values. The index nodes must store only
enough of the key value to distinguish one branch from another and direct the fin
operation to the appropriate leaf (see Figure I).

Figure 9I - The tree fragment on the left contains the full key in the index node. T
tree fragment on the right contains only the “minimum distinguishing key.”

Prefix B+-Trees store the “minimum distinguishing key” in the index nodes. As a
result, many more index records may be packed into the index nodes thus incre
the performance of the B+-Tree by decreasing the height of the tree.

SQLBase implementation
SQLBase B-Tree indexes are based on the B-Tree variant described above as t
prefix B+-Trees. This B-Tree variant provides excellent random and sequential
performance. Various aspects concerning SQLBase’s implementation of prefix B+-
Trees are discussed below.

Index node size
The performance of a B-Tree is, as we discussed above, largely dependent on t
height of the tree. As we also discussed, tree height is a function of node size (nu
of index records per node) and the number of rows in the table.

However, since SQLBase only stores the minimum distinguishing key in non-lea
nodes, node size is difficult to predict for non-leaf nodes. This is because the sa
in secondary storage achieved through only storing the minimum distinguishing
is hard to predict because it is dependent upon the actual values. As a general r
however, a 2:1 (or better) compression ratio is generally achieved. In other words
node size of non-leaf nodes may be estimated as two times the size of leaf node

SQLBase index nodes are based on a database page (see Chapter 8, Database
For DOS, OS/2, Windows NT, and NetWare, the page size is 1024 (for UNIX

beta

alpha gamm a

b

alp ha gam m a
9-12 Advanced Topics Guide

SQLBase implementation

 is 74

rage,

erally

ave to
 due

his

abase

sh.
 the
ce.

of the

tions
 the
ct

, the
uent
oot.
hout
implementations of SQLBase the pages size is 2048 bytes). Index page overhead
bytes. The node size of leaf nodes is calculated as:

where

and:

For example, if an index contains three attributes, each of which contains, on ave
20 characters, then the B-Tree node size is:

Hence, in this example, the node size of leaf nodes is twelve and one would gen
expect the node size for non-leaf nodes to exceed 24, in this case.

Performance considerations
In an ideal situation, a database designer could set up an index and then rarely h
perform any maintenance on it. However, index performance degrades over time
to a number of factors, foremost of which is the pattern in which insertions and
deletions occur. When this happens, index reorganization becomes necessary. T
reorganization can take one of two possible forms:

• Reorganization of the entire database will rebuild all indexes within the
database as a subset of the process. This is overkill unless the entire dat
has reached the point where total reorganization is required.

• Dropping and then re-creating an index will cause the index to be built fre
This will result in an optimal, balanced tree structure for the index, and is
simplest and quickest way to return a degraded index to peak performan

Deletions can cause balancing problems in the tree structure and fragmentation
index blocks. SQLBase does not perform redistributions or concatenations when
underflows occur in delete processing, based on the philosophy that these opera
would take too much time during regular transaction execution. Rather, it is left to
DBA to rebuild the index when the accumulated underflows are sufficient to impa
performance.

Insertions are not always spread uniformly across the index tree structure. When
many insertions occur within a small range of symbolic key values within the tree
freespace within this area is rapidly used up. Once this occurs, there can be freq
splits within this portion of the tree, sometimes reaching all the way back to the r
While these operations are taking place, many exclusive locks will be held throug

NodeSize
UsableIndexPageSize

IndexEntryLength
--=

UsableIndexPageSize 1024 74–()
100 PercentFree–

100

 ×=

IndexEntryLength 9 NbrColumns KeyLength+ +=

NodeSize
950

100 5–()
100

9 3 60+ +
-------------------------------- 950 0.95()

72
------------------------ 12= = =
Advanced Topics Guide 9-13

Chapter 9 B-Tree Indexes

ring

lues
s

erted
nd
re.
ake

cur,
wish
e

f
 of

f the

o
ree
lue
d to

e

e

dex
the index structure for the duration of the split operation. The locks may cause
contention problems for other transactions wishing to use the index structure du
this time, see chapter 13, Concurrency Control, for more details on the locking
implications of B-Tree indexes in SQLBase.

This imbalance is the primary reason why indexes placed on columns whose va
are incremental in nature, such as a timestamp, can cause performance problem
within an application. These indexes grow only along one edge. As rows are ins
along this edge splits occur frequently, so that transactions updating this index fi
themselves competing for locks within a small portion of the overall index structu
One possible solution to this problem is to add columns to the index in order to m
the insertion pattern more evenly distributed throughout the tree.

Setting freespace for an index
Since the effect of repetitive insertion activity into an index can cause splits to oc
which in turn can cause processing overhead and locking contention, DBAs may
to minimize the possibility of excessive splits occurring within indexes that are th
subject of high transaction activity. The PCTFREE specification of the CREATE
INDEX statement allows DBAs to realize this goal. Through correct calculation o
the PCTFREE figure, split activity in an index may be minimized for some period
time following the creation or rebuilding of an index. How long this time period is
depends on both the rate of insertion activity against the index, and the pattern o
symbolic keys being introduced into the existing index structure.

When creating an index, the database designer can choose a PCTFREE value t
specify in the CREATE INDEX statement. This value determines the amount of f
space that will be left in the index nodes during the index’s initial creation. This va
is fairly easy to calculate for an index where the insertion activity can be expecte
be evenly distributed throughout the index structure, by utilizing the following
procedure:

Calculating PCTFREE for an index

1. Either estimate or obtain the current number of rows in the table. This can b
obtained directly through the sqlgnr function.

2. Estimate the number of rows that will be in the table at the point in time in th
future when you plan on rebuilding the index.

3. Calculate the PCTFREE parameter according to the following formula:

4. If the value calculated above is greater than 50%, consider rebuilding the in
more frequently to lower the PCTFREE value.

PCTFREE
CurrentRows FutureRows–()

CurrentRows
--

 100×=
9-14 Advanced Topics Guide

SQLBase implementation

ve a

lding
te.
 be to

active
ctions

ion or

tly of

for
g

s

he
exes
 index
ce that
re of

one
 its
key of
ex.
dex
of the
y
eing
This procedure can also serve as a starting point for an index that is known to ha
skewed insertion pattern. After obtaining a PCTFREE value from this procedure,
either increase the value by a factor of between 1.5 to 3, or simply plan on rebui
the index more frequently than the basis of your future row estimate would indica
The more skewed the insertion pattern, the more dramatic the adjustment should
ward off potential performance problems.

B-Tree locking
This topic is covered extensively in Chapter 13, Concurrency Control. To summarize,
indexes can often become points of lock contention when they are placed on an
table, and should therefore be used sparingly in these cases. When many transa
are being executed simultaneously, and rapid response time is critical, any insert
deletion activity in index structures will have a significant adverse impact.

Non-unique indexes
Indexes which lack the “UNIQUE” clause on the CREATE INDEX statement can
contain more than one row with identical symbolic key values. SQLBase handles
these entries as if they were unique anyway, in that each entry exists independen
any other entry. This is in contrast to some DBMSs which build synonym chains
duplicate entries, and then incur significant overhead while maintaining these lon
synonym chains. For this reason, SQLBase can handle any number of duplicate
within an index without incurring any significant performance degradation, and in
fact some space savings will be realized due to the minimum distinguishing key
technique.

One potential drawback to non-unique indexes, though, is their lower selectivity
factor. This is a statistic that is kept for each index by SQLBase, and is used by t
query optimizer (covered in detail in Chapters 15 through 18) when selecting ind
to use when building an access path to satisfy a query’s data requirements. If an
has many duplicates as a percentage of its total rows, then there is a good chan
the index may rarely, if ever, be selected for use by the optimizer. Such indexes a
no benefit whatsoever to the system, and should be deleted.

An alternative action that will increase the selectivity factor of the index is to add
or more additional columns to the low order end of the index which will enhance
uniqueness. In fact, one technique that is sometimes used is to add the primary
the table to the low order of an index, which can then be created as a unique ind
Note, though, that this technique will not effect the optimizer’s selection of the in
unless these additional columns can actually be specified in the WHERE clause
SQL referencing the table. This is because the optimizer considers the selectivit
factor only for those index columns that are actually specified in the statement b
prepared for execution, as opposed to the entire composite index key.
Advanced Topics Guide 9-15

of

d

e

Advanced Topics Guide
Chapter 10

Hashed Indexes

In this chapter we:

• Introduce the concept of hashing, and contrast its effect on the location
rows within a table’s storage space with that of non-hashed tables.

• Analyze the theory behind the performance benefits that can be expecte
when hashing a table.

• Explain the details of SQLBase’s implementation of hashing including th
steps you need to take to ensure that your hashed tables will meet your
performance expectations.
Advanced Topics Guide 10-1

Chapter 10 Hashed Indexes

ious
f this

that

ins
ereas
y rows

bject
or the
is no
uence
lic

ly

n the
h a

 of

 the
ase

with

Hash table overview
SQLBase offers an alternative to the B+Tree index structure covered in the prev
chapter. This alternative is the clustered hashed index, which for the remainder o
chapter will simply be called hashing. A database table that has a clustered hashed
index placed on it is called a hashed table.

Row location in hashed tables
Hashing is an entirely different approach from the conventional B+Tree index in
the basic allocation algorithm for table rows is fundamentally changed. In other
words, the main effect of a clustered hashed index is on the subject table itself,
whereas the main effect of a B+Tree index is to allocate disk storage and build a
B+Tree representation of the subject column’s symbolic key values, which conta
pointers into the subject table. B+Tree indexes do not alter the subject table, wh
hash indexes do. This is the reason that a hash index must be created prior to an
being inserted into the table, if the subject table of the CREATE CLUSTERED
HASHED INDEX statement is not empty an error will be returned.

It is important to remember that a clustered hashed index has no physical index o
as the B+Tree index does. The effect is entirely on the allocation scheme used f
subject table. Also, the term “clustered” is something of a misnomer, since there
sequential order to the storage of the rows that corresponds to the collating seq
of the symbolic key. The “clustered” aspect is that rows which have equal symbo
keys will be stored on the same pages, as contrasting with non-hashed table row
allocation which is governed strictly by the timing of the insert commands (rough
equivalent to being clustered chronologically by insertion time).

Performance benefits of hashed tables
Hashing is a file organization technique which provides very fast access to rows i
file. A properly implemented hashed table will allow access to almost all rows wit
single read operation. In order for the hash access technique to be utilized, the
SELECT ... WHERE clause must specify an equality predicate on the hash field
the table. This hash field is the column, or columns, named as the subject of the
CREATE CLUSTERED HASHED INDEX statement. The hash field (or the
concatenation of columns which comprise the hash field) is also commonly called
hash key. Example 1 illustrates the importance of the hashing method to a datab
system in saving disk accesses (I/Os) when searching for a record.

Example 1: Suppose there is a file with 50,000 records stored on a disk with
block size 1,024 bytes. We assume that records are of fixed size
a record length of 100 bytes. Hence there are 1024/100 = 10
records in each block, where x is a floor of x, which truncates the
fraction part of x (for example, 3.1 = 3). The number of blocks
10-2 Advanced Topics Guide

Hash table overview

 I/
/O
wo
is

ss.
w
cess
ss

ue:

ias
thm

 of the
s is
e
ed to

),

 for
.
ith
ided
ed

t
hash
ace
 then
hich
ell
low
needed for the file is 50,000/10 = 5,000 blocks, where x is a ceil-
ing of x, which rounds up the fraction part of x (for example, 3.1
= 4). Access of the file through a BTree index would require one
O for the leaf page, one for the actual data block, plus another I
for each level in the BTree structure (probably at least another t
I/Os, although would probably be improved through caching). Th
would make a total of approximately four I/Os for the BTree acce
However, hashing makes it possible to find a record with very fe
disk accesses, typically one disk I/O. This means that the hash ac
would require only one-fourth of the I/O time that the BTree acce
would.

Potential pitfalls of hashing
This improvement in performance does not come free, of course. The following
drawbacks to hashing should be considered before selecting this access techniq

• The hash function must work well with the selected hash key, eliminating b
to minimize overflow. Fortunately, SQLBase has an excellent hash algori
built-in which works well for most keys.

• Rows of hashed tables cannot be accessed sequentially in the sequence
primary key without undergoing an intermediate sort. If sequential acces
often required, then a B+-Tree index on the primary key would have to b
created to provide an efficient access technique that would bypass the ne
perform a sort operation.

• Hash keys have no generic capabilities, therefore the LIKE, less than (<
greater than (>), BETWEEN, or similar predicates cannot be used with
hashed access. The only predicates that can be used are the equal (=),
single value retrieval, or the IN list, for multiple value equality conditions
Also, for multi-column hash keys, all columns must be specified, each w
one of the two allowable predicates. Again, these capabilities can be prov
on a hashed table by creating a B+-Tree index on the table for the desir
columns.

• Space for the hashed table will be pre-allocated at table creation time,
specifically when the CREATE CLUSTERED HASHED INDEX statemen
is executed. This space allocation is one of the parameters used by the
function when computing row locations. For this reason, changing the sp
allocation requires the table to be unloaded, dropped and redefined, and
reloaded. Because this may be a very time consuming process, tables w
experience wide unpredictable swings in row volume are generally not w
suited for hash treatment. Tables which maintain a consistent size or a s
predictable growth are the best hash candidates.
Advanced Topics Guide 10-3

Chapter 10 Hashed Indexes

eral.
ash
han
he key
n.

ities

key

f the
as

s. If

tails

e we
sult
cal

ich
i-

der
op-

lpha-
 ran-
Hashing theory
We will now examine the characteristics of the hashing storage technique in gen
We will cover the hash function, which performs the transformation of symbolic h
key values into storage addresses, the concept of bucket hashing, where more t
one record is held at the same hash address, and provide a detailed analysis of t
performance criteria used to evaluate the success of a hashed file implementatio
These criteria all relate to a hashed file’s disk space allocation, and the probabil
of the hashing algorithm being able to accomplish its objective of storing and
retrieving records with no more than one I/O.

The hash function
The idea of hashing is to utilize a hash function, H, which is applied to the hash
and yields the address of the row:

The purpose of a hash function is to transform the hash key (which may be a
concatenation of multiple columns) to a page address that lies within the range o
pre-allocated file. The algorithm that the function uses is fairly arbitrary, so long
the final result is always within the range of the file. It is also desirable that the
transformation be uniform, that is, there be no bias toward any particular addres
there is bias, rows hashing to the “favored” addresses are likely to overflow their
target pages and take longer to store and retrieve (from overflow pages). The de
of a simple hypothetical hash function are shown in the next example.

Example 2: Consider a file where the hash field is a person's name. Suppos
want to reserve space for 1,000 records, which implies that the re
of the function must be in the range of 1 to 1000. The hypotheti
hash function H can be defined as taking two numbers from the
ASCII representations of the first two characters of the name (wh
is the hash key), multiplying them together (in an attempt to elim
nate bias), and dividing the result by 1,000 and taking the remain
for the hashing address (which insures the result will be in the pr
er range). Table 1 shows how three names would produce three
hashing addresses. Note that although the names are listed in a
betical order, the addresses are not in this order, but appear to be
dom.

Name ASCII Codes Product Address

BOB 66 , 79 5214 214

STACY 83 , 84 6972 972

H HashKeyValue() RecordAddress⇒
10-4 Advanced Topics Guide

Hashing theory

ingle
a of a
 call

 bucket
d. The
n a
s for
the
 the
ce it

e is a
me
here is
lve

0
.
dle

.

shed
Bucket hashing
In practice, the I/O system retrieves a group of records from a disk, instead of a s
record, because records are grouped together in a block. We can extend the ide
record address in a file to the address of a block containing a set of records, and
each block a hash bucket. In a bucket scheme, the hashing function generates a
number instead of a record address as the hashing address for a given hash fiel
bucket number can usually be directly transformed into a relative block number i
hashed file. When this relative block number is added to the starting disk addres
the file, any block in the file may be accessed directly via its disk address. Once
bucket’s disk address is resolved, we need only a single block access to retrieve
required record. The cost to search for the record within the block is minimal sin
can be carried out in a main memory buffer.

Collisions and overflows
A collision occurs during an insertion when two records are hashed to the same
address. Referring to our hypothetical hash function in example 1, suppose ther
record in the file with the name ETHAN. Since the name ETHAN starts with the sa
two characters as the name TED, they produce the same hashing address 796. T
a collision between the record for TED and the one for ETHAN. One way to reso
the problem of collisions is to find a hashing function that prevents collisions from
happening at all. Such a hashing function is called a perfect hashing. However,
perfect hashing functions are rare. Knuth showed that in the set of all possible
mappings of a 31-record set to a table with 41 locations, only about one out of 17 is
the perfect function. Therefore it is not practical to find a perfect hashing function
Instead, a better strategy is to focus on determining an efficient technique to han
collisions when they occur.

In bucket hashing, a collision occurs when two records hash to the same bucket
Collisions are not serious if the bucket is not full, since records can be stored in
available spaces in the bucket. However, overflow arises when a new record is ha
to a bucket which is already full. How SQLBase handles collisions in its bucket
hashing algorithm will be examined in a later section of this chapter.

TED 84 , 69 5796 796

Name ASCII Codes Product Address
Advanced Topics Guide 10-5

Chapter 10 Hashed Indexes

ace
ount
 of

e if

eads
e

rule

ee
rs.
nt

date,
any
e a

his
lds
ates.

oyee
 of
ly
ash
ed
, the
d by

, it is

Collision avoidance techniques
Two techniques are available to the database designer in order to reduce the
possibility of collisions in a hashed table. The first technique involves selecting a
hash key which will allow for the even distribution of rows across the allocated sp
using the selected hash function. The other technique is to allocate a greater am
of space than is needed in order to allow the hash function a greater page range
allowable results to operate across. Application of these techniques is imperativ
the desired performance benefits associated with hashing are to be achieved.

Hash key selection
The first technique entails choosing the hash field carefully. A badly chosen key l
to poor hashing results. An inappropriately selected hash key often has one of th
following characteristics:

• Values of the key are not evenly distributed. In general, uniqueness is a
desirable characteristic for a hash key (one significant exception to this
is described in Chapter 6, Refining the Physical Design). Suppose there is an
employee table with each record consisting of attributes such as employ
social security number (SSN), name, and department code, among othe
The primary key for the employee is the 9-digit long SSN. The departme
code is 2-digits long. The employee’s name is not a good hash key candi
since there is an uneven distribution of names in most organizations (m
“Smith” and “Jones” occurrences). Also, the department code may not b
good candidate either, since many employee records could be clustered
together in departments which have very large staffs. The best key for t
case is the employee SSN, which is unique. Serially created numeric fie
that contain arbitrary values are often found to be good hash key candid

• The key does not match well to the hash function. Suppose that the empl
ID column, rather than being SSN, is now 5-digits long, and has the form
YYNNN, where YY is the year of hire, and NNN is an integer consecutive
allocated from 000 up within a year. Now also consider the hypothetical h
function used back in Example 1, where the hashing address is generat
based on the first two characters of the selected hash field. In this case
employee ID would not be a good candidate since all the employees hire
the company in the same year will have the same hashing address.

• The number of all possible hashing addresses is too small. For example
not feasible to map millions of U.S. taxpayers’ records to the 50 hashing
addresses representing the 50 states.
10-6 Advanced Topics Guide

Hashing theory

 the
h
any
ts
 very
ge is
uestion
g
erms

lated

ince a
ucket
es,
lity of

mory
age.

hen
te
us

 of

n be
Over-allocating disk space
The second collision avoidance technique, which is generally only effective when
hash key is fairly unique, involves allocating extra space. It is easier to find a has
function that avoids collisions if we have only a few records to distribute among m
slots than if we have more records than slots. For example, if there are 1,000 slo
reserved and only 100 locations will be used to store records, the result might be
good using the hypothetical hash function in Example 1. However, the disadvanta
that the storage space is wasted (90% of the space is wasted in this case). The q
is how much extra space can be tolerated while still obtaining acceptable hashin
performance. In the next section a technique for measuring the performance in t
of expected overflow will be shown.

Hashing disk space utilization and performance
When creating a hashed table, the database designer must consider the inter-re
design issues of bucket size and packing density, both of which affect database
performance.

Bucket size
Bucket size is the number of records that can be held in a bucket. For instance, s
bucket of 1,024 bytes can store 10 records each of which is 100 bytes long, the b
size is 10. Alternatively, if the record length is doubled from 100 bytes to 200 byt
the bucket size is decreased from 10 to 5. As bucket size increases, the probabi
overflow decreases but the time taken to search for a record in the bucket may
increase. However, the cost of accessing a record once the bucket is in main me
is very small compared with the time required to read a bucket in secondary stor

Packing density
One characteristic of hashing is that the number of I/Os required to perform an
insertion or retrieval tends to increase as the file fills. This seems intuitive since w
most of the buckets are full, it is more likely that the hashing function will genera
the address of a bucket which is already full. Overallocation of the file is an obvio
way to lessen this problem, however it is not desirable to allocate space for a lot
empty buckets. A measurement called packing density is the ratio of the number of
records (R) in a file to the number of available slots (N): We know that N=B*S where

B is the number of home buckets (which equals the number of addresses that ca

PackingDensity
Records

NumberOfSlots
--=
Advanced Topics Guide 10-7

Chapter 10 Hashed Indexes

f

age
e

 a

e
ber
 to a

 the
ize,

r

ted,
eing
ability
generated by the hashing function), and S is the bucket size (the maximum number o
rows which may be stored in each bucket).

Therefore, since, we also know that we can calculate the number of buckets (B)
required to store a particular hash table, given the number of rows R, and the bucket
size S (which is a function of the page size and the row length) after choosing a
packing density PD by solving the previous formula for B, which gives

This concept is important because in SQLBase bucket size is a function of the p
size (which is fixed for a specific implementation platform), the row length, and th
PCTFREE specification on the CREATE TABLE statement. Most of these
parameters cannot be easily changed for hashing performance reasons, but are
determined by other factors. Your main parameter for tuning the performance of
hash table in SQLBase is by altering the number of buckets, B, in the table’s storage
space. The number of home buckets (B) is the most easily adjusted, and therefore th
most important, parameter which affects packing density. By increasing the num
of home buckets, packing density drops and hashing performance improves due
decrease in the number of overflows.

Packing density itself is one of the most important parameters affecting hashing
performance. As a general rule of thumb, collisions are unacceptably frequent if
packing density exceeds 70%. This rule can be greatly impacted by the bucket s
which is determined by row and page size, however. This is why you should
understand how to determine a packing density figure that is appropriate for you
particular table.

Hashing performance analysis
Given the choices for bucket size (S) and packing density (R/N), we can estimate the
number of overflows. We must assume that the hash function is uniformly distribu
which implies two things. One is that the probabilities associated with a record b
inserted into a home bucket are independent. The other is that the average prob
that a record is inserted into one of B home buckets is .

Therefore the probability that a certain set of r records will be inserted into a given
home bucket b is . Note that b is one specific occurrence of all home buckets, B.
Also, r represents an arbitrary subset of all records R, which means that r may contain
any number of records from 1 to B.

PD
R

B S×-------------=

B

R
S

PD

=

1
B

1
B

 r
10-8 Advanced Topics Guide

Hashing theory

a
rflow
e
Next we wish to calculate the probability of the remaining (R-r) records being
inserted into different home buckets other than b. Let be the probability that a
record will not be inserted into a particular bucket (called b). Hence, is
the probability that (R-r) records are not inserted in bucket b.

We have now introduced the probability that r of R records will be inserted in a home
bucket (b) as well as the probability that the remaining (R-r) records are not inserted
in bucket b. Therefore, the probability of r records being inserted into bucket b and
the remaining (R-r) records not being inserted into bucket b is the product of
and (or).

However, there are different combinations that R records could be taken r at a time.
The number of different ways is:

.

Thus the probability of a given bucket b having exactly r records (where) is
.

Given p(r), the probability of exactly j overflow records in a specific bucket with
bucket size S is p(S+j). Therefore the expected number of overflows for any given
bucket is :

Using this formula, we see that the expected number of overflows for all B home
buckets is:

.

We can express the above formula as a percentage of the records in the file:

.

Since we assume a uniform distribution for any given packing density
(), any bias toward certain addresses in the hash function is likely to
increase the rate of overflow. Be aware that a figure produced with this model is
minimum percentage. Given the formulas above, we can derive an expected ove
against packing density for a particular bucket size. The following table shows th
expected percentage of overflow for different combinations of bucket size and
packing density.

1 1
B
----–

1
1
B
----–

 R r–

1
B

 r

1
1
B
----–

 R r– 1
B

 r

1
1
B
----–

 R r–
×

R!
r! R r–()!×

r R≤

p r()
R!

r! R r–()!×
----------------------------- 1

B

r

1
1
B
----–

 R r–
××=

p S 1+() 2p S 2+() 3p S 3+() ... R S–()p R()+ + + + j p S j+()×
j 1=

R S–

∑=

B j p S j+()×

j 1=

R S–

∑×

OverflowRatio

B j p S j+()×

j 1=

R S–

∑×

R
--=

PD
R

B S×
-------------=
Advanced Topics Guide 10-9

Chapter 10 Hashed Indexes

le.

as a
 the

le of
re
-
 at

r-

7

8

The following example illustrates the use of this table in the design of a hash tab

Example 3: A company’s employee information is stored using the hashing
technique. Each employee record is 75 bytes. Each disk block h
usable total of 938 bytes of space. The DBA therefore calculates
bucket size as 12 (938/75 = 12). The DBA decides on a packing
density of 70%. He also projects that the system must be capab
holding up to 50,000 employees’ records. The file would therefo
require (50,000/12)/0.70 = 5953 home buckets. Also, with a pack
ing density of 70% and a bucket size of 12, table 2 predicts that
least 2.13% of the records would be expected to go to overflow
buckets. In other words, there are 50,000*2.13%=1,065 overflow
records requiring 1,065/12 =89 overflow buckets. Therefore every
5,953/89 = 67 home buckets, on average, would require an ove
flow bucket.

Bucket
Size

Packing Density (%)

50 55 60 65 70 75 80 85 90 95

2 10.27 11.90 13.56 15.25 16.94 18.65 20.35 22.04 23.71 25.3

3 5.92 7.29 8.75 10.30 11.92 13.59 15.30 17.05 18.81 20.5

5 2.44 3.36 4.45 5.68 7.07 8.58 10.21 11.93 13.73 15.60

8 0.83 1.33 2.01 2.87 3.94 5.20 6.65 8.26 10.03 11.93

12 0.24 0.47 0.84 1.38 2.13 3.11 4.33 5.79 7.48 9.36

17 0.06 0.15 0.32 0.63 1.12 1.85 2.84 4.12 5.69 7.53

23 0.01 0.04 0.12 0.28 0.58 1.08 1.86 2.96 4.40 6.18

30 <0.01 0.01 0.04 0.11 0.29 0.63 1.22 2.14 3.45 5.16
10-10 Advanced Topics Guide

SQLBase hashing implementation

as

t to
sh

 non-
ch is
e
und

n to
 are
d by

re
h

d
h do

e
LBase

SQLBase hashing implementation
In this section, the implementation of the hash storage technique in SQLBase is
discussed. We will cover how the location of table rows differs for hashed tables
contrasted to non-hashed tables. We will also describe how to set an appropriate
packing density in SQLBase. In particular, the desired packing density is an inpu
the CREATE INDEX command in the form of a specification of the number of ha
buckets to be allocated.

Location of table rows
In terms of the effect on the subject table’s allocation method for each of the two
techniques (hashed or non-hashed tables), rows are located as follows:

• Any table which does not have a clustered hashed index placed on it (a
hashed table) allocates space for row insert operations in a manner whi
basically chronological. The first rows stored in the table are stored on th
first data page, and so on until the most recently stored rows which are fo
on the last data page (this is not exactly true because of measures take
avoid lock contention between different transactions). These data pages
allocated in groups of pages called extents, the size of which is determine
the EXTENSION environment variable setting.

• All of the data pages for a hashed table are pre-allocated at the time the
CREATE CLUSTERED HASHED INDEX statement is executed. Rows a
located within these data pages through the use of a hash function, whic
maps the symbolic key value of the index to a particular offset within this
already fixed number of pages. As will be seen, when these pre-allocate
pages fill up, no further data pages are allocated. Rather, any rows whic
not fit on the page which is targeted by the hash function are stored on
overflow pages, which will eventually degrade performance.

Hash function
SQLBase contains a pre-programmed hash function which will provide excellent
results for the vast majority of symbolic keys. This function is internal to SQLBas
and cannot be changed by the database designer in any way. For efficiency, SQ
implements much of the hash function using bit operations, such as exclusive-or
(XOR), and bitwise complement (1’s complement). The following procedure is
followed by the SQLBase hash function when transforming a symbolic key into a
hash address.
Advanced Topics Guide 10-11

Chapter 10 Hashed Indexes

ne or

s to
en

 the

her

 are

ps”
inate
s
f

 (or
ich
e-
 a
ey
is

B.
How SQLBase hashes a key to a database page

The hashing function is implemented as a 3-step key-to-address mapping:

1. Transform the symbolic key into a single binary fullword. This allows for
standardization of the remainder of the process. The symbolic key may be o
more numeric or character types of any length, where each byte can be
represented as an ASCII code. SQLBase performs the following 3 sub-step
convert the symbolic key into a standard fullword (4 bytes). This fullword is th
treated as an unsigned binary integer for the remaining steps.

1A. Divide the key into 4-byte units. This accomplishes the standardization of
length.

1B. Perform a XOR operation on all of the 4-byte units, XORing them all toget
and giving a 4-byte result. This ensures that all of the information contained
within the symbolic key is used to compute the hash key. No parts of the key
omitted from the process.

1C. The result of 1B is a binary fullword. SQLBase then performs a bitwise
complement on it. This operation, also called a one’s complement, simply “fli
the value of each bit (ones become zeros and vice versa). This is done to elim
any bias that may have survived to this point from the symbolic key due to it
coding format, particularly ASCII characters (which are a fairly small range o
ASCII), or SQLBase internal format numeric fields (which are stored in base
100).

Example 4: In an employee table, an eight-character string YYMMCCCC is
used to represent a hash key. The YY (or MM) denotes the year
month) when an employee was hired (an example is “9305”, wh
means that an employee was hired in May, 1993), and CCCC d
notes a name code for the employee (such as where “EJSM” is
code for E. J. Smith). For this example we will use a symbolic k
value of “9305EJSM”. The ASCII representation for 9305EJSM
57, 51, 48, 53, 69, 74, 83, and 77.

• Step 1A. The key is divided into four-byte units.

Key1 = 57,51,48,53
Key2 = 69,74,83,77

• Step 1B. Key1 is XORed with key2.

57,51,48,53 XOR 69,74,83,77 =
0011,1001,0011,0011,0011,0000,0011,0101 XOR
0100,0101,0100,1010,0101,0011,0100,1101 =
0111,1100,0111,1001,0110,0011,0111,1000
(124,121,99,120 in ASCII)

• Step 1C. Now perform a bitwise complement on the result of 1
10-12 Advanced Topics Guide

SQLBase hashing implementation

ange
, the
der,

ase
g a

ave
le
Di-
 re-

e by
ge

 em-
d to
ical
w

ble,

o tune
tion

on,
tly).
size is
he
e
~(0111,1100,0111,1001,0110,0011,0111,1000) =
1000,0011,1000,0110,1001,1100,1000,0111
(131,134,156,135 in ASCII)
2,206,637,191 when treated as a fullword binary integer and
converted to decimal.
2. Transform the binary fullword into an intermediate integer that has the same r

as the number of page addresses in the table’s space allocation. In this step
method used is based on performing integer division, then finding the remain
through the use of the MOD operation.

This integer is derived by performing a MOD of the output of step one with a
number A, where A is the number of hash buckets that are allocated. SQLB
always sets A to a prime number to avoid the possibility of divisors producin
zero result from the MOD operation.

Example 5: To continue from example 4, assume that 1,753 hash buckets h
been allocated for the employee table. This means that allowab
values for the results of step 2 would lie in the range of 0-1752.
viding 2,206,637,191 by 1753 gives a result of 1,258,777 with a
mainder of 1,110. Therefore, the result of step 2 is 1,110.

3. Transform the output of step two into the physical page address. This is don
adding a starting page number, which yields the final hash address of the pa
containing the row.

Example 6: Suppose that the first page number used for data storage of the
ployee table rows is page 60. This means that 60 must be adde
the target bucket obtained in example 5 in order to get the phys
target page number of this row. Since 1,110 + 60 = 1,170, the ro
will be stored on page 1,170. Similarly, if a SELECT ... WHERE
keyname = “9305EJSM” was performed against the employee ta
SQLBase would look for the row on page 1,170.

Specifying the packing density
Packing density is the single most important design parameter that you can use t
the performance of a hashed table. This is accomplished through careful calcula
of the figure used in either the SIZE “b” BUCKETS or the SIZE “n” ROWS clauses
of the CREATE CLUSTERED HASHED INDEX statement (note that “n” is the
number of rows used by SQLBase to calculate the required hash bucket allocati
whereas “b” is the number of hash buckets that should be allocated specified direc
Since SQLBase provides a pre-programmed hash function, and the hash bucket
fixed with page and row size, this estimate of the CREATE INDEX statement is t
only major influence that a database designer can exercise over the results of th
hashing process.
Advanced Topics Guide 10-13

Chapter 10 Hashed Indexes

e of
le
d,
 the
or
g
his
ckets
TE

ets

WS

on of

ure

nsity

vered
you
t

ent

r

 per

note
When determining what number to place in this DDL statement, an optimal choic
packing density becomes critical in order to reduce the number of overflows whi
still utilizing disk space efficiently. While the 70% rule of thumb figure is often use
we encourage you to look in the expected overflow table explained earlier to find
packing density that is most appropriate for the bucket size that will be in effect f
each of your hashed tables. By looking at this table, you can decide what packin
density is appropriate in order to obtain an expected low number of overflows. T
packing density can then be used as input to the calculation of the number of bu
estimate for the CREATE INDEX statement. Remember that it is when the CREA
INDEX statement (not CREATE TABLE) is executed that a fixed number of buck
will be allocated for storing the hashed table. Also, SQLBase will round up the
number you specify in the BUCKETS form, or the number it calculates in the RO
form, of the CREATE INDEX statement to the next higher prime number.

Simple hash bucket calculation
Since in this manual we assume that you wish to control the options available in
SQLBase to achieve your best possible performance, we only consider calculati
the SIZE “b” BUCKETS option of the CREATE CLUSTERED HASHED INDEX
statement. Use of this form of the statement is encouraged in order to target a
particular packing density that is desired, and simplify the specification of this fig
to SQLBase. The alternative form of SIZE “n” ROWS is more appropriate for quick
implementation of hash tables that are trivial in size and do not have stringent
performance requirements. Calculating the row estimate for a desired packing de
is much more difficult and involved than the bucket calculation, and in the end
achieves the same result. For this reason, row estimate calculation will not be co
or explained in detail. If you wish to use the row estimate option, we encourage
to make sure your estimate is sufficiently high to avoid the poor performance tha
could result from realizing a large number of hash collisions in a table.

We will now describe how the number of buckets for the CREATE INDEX statem
is calculated given the packing density. As you may recall, the formula

allows for the direct calculation of the number of buckets, B, given a particular
packing density (PD), number of rows (R), and bucket size expressed as the numbe
of rows which may occupy a bucket (S).

The S parameter used in the previous formula is the same as the number of rows
page which is calculated as an intermediate result when estimating the size of a
database table, as explained in the next chapter of database size estimation. To
summarize that formula, the rows per page of a table are calculated as follows (
that the is the sum of the length of all columns in the table, for

B

R
S

PD

=

ΣColLengths
10-14 Advanced Topics Guide

SQLBase hashing implementation

s for
ase
of
-
ided

 ex-
n

ter-
sity,
ets

ack-

 is
information on how to find the length of each column, refer to Chapter 11, Estimation
Database Size):

Example 7: Suppose a table has 7 columns, an average data width of 66 byte
all columns, and is projected to contain 60,000 rows. The datab
is running on the SQLBase NLM server, which has a page size
1024K. The PCTFREE parameter of the CREATE TABLE state
ment has been allowed to default to 10%. The designer has dec
on a packing density of 70%. Bucket size is

.

From the expected overflow table we see that the corresponding
pected overflow is 3.94%. Using the formula given above, we ca
compute the number of buckets required in the CREATE INDEX
statement as (60,000/8)/70% = 10,715 buckets. In other words,
SQLBase will allocate 10,715 pages for storing hashed data. Al
natively, the designer could choose to have an 80% packing den
increasing the expected overflow to 6.65%. The number of buck
in the CREATE INDEX statement would then be (60,000/8)/80%
= 9,375 pages would be required. Note that the use of a higher p
ing density will save space but that the overflow rate will also in-
crease, in this case from 3.94% to 6.65% while the space saved
10,715 - 9,375 = 1,340 pages or approximately 1.3 megabytes.

S PageSize 86–
24 2 NumCols×() ΣColLengths+ + 100×

100 PCTFREE–
--

---=

1024 86–
24 2 7×() 66+ +() 100×

100 10–
--

-- 8=
Advanced Topics Guide 10-15

r the

e

 as an

Advanced Topics Guide
Chapter 11

Estimating Database Size

In this chapter we:

• Explain why estimating the size of a database can be an important task fo
DBA.

• Describe the use of existing spreadsheets that simplify the database siz
estimation process.

• Cover the sizing formulas for the following database objects in detail:

• Columns

• Non-hashed tables

• Hashed tables

• B+Tree indexes

• SQLBase catalog tables

• SQLBase overhead

• Perform the complete manual size calculations on an example database
exercise.
Advanced Topics Guide 11-1

Chapter 11 Estimating Database Size

plete
esign,
tes

fore,

se on

 this,
 in

r

To
e

e

e as
 the

e that
ges
to all

ize
d for

em
Introduction
The purpose of this chapter is to enable a DBA to estimate the total size of a com
database. The raw data needed to perform this task are the detailed database d
including tables, columns, indexes, and views, as well as row occurrence estima
for each table in the database.

An accurate projection of a database’s ultimate size is more critical than ever be
since gigabyte database systems are becoming increasingly common in today’s
market. A database designer can base his estimates of the growth of the databa
observable and measurable business metrics such as the number of new order
transactions processed daily. This information may be extrapolated to row count
estimates for the various database tables involved in each transaction. Following
the required disk capacity can be pre-determined by using the formulas provided
this chapter. The results can then be used to determine appropriate hardware
configurations, both for the initial implementation of the application as well as fo
periodic upgrades in capacity.

The starting point for this estimation is to calculate the total size for every table.
do so, we need to (1) calculate each column width in a table; and (2) calculate th
table size based on the information derived from(1). Table size is calculated
differently for tables which are the subject of a clustered hashed index, due to th
change this has on the table’s space allocation technique:

• If the index is created by specifying the option of CLUSTERED HASHED
in the CREATE INDEX statement, we estimate the size of the hashed fil
the table size. This hashed file is allocated at full size immediately when
CREATE INDEX statement is executed.

• Otherwise, we need to estimate the non-hashed table size. This is the siz
we estimate the table will grow to when fully populated with data. Data pa
for the table will be allocated as they are needed over time, as opposed
at once as is the case with hashed tables.

If the table is associated with one or more BTree indexes (indexes which do not
specify the option of CLUSTERED HASHED), then the calculation of the table s
should also consider the space required for the indexes. The total space require
the table is then the sum of the table itself and all associated BTree indexes.

The database size can then be obtained by summing up all the table sizes, the
overhead of all views defined against these tables, and the overhead of the syst
catalog (or data dictionary) tables in the database.
11-2 Advanced Topics Guide

Formulas for estimating database size

index
.

e
cking
 each
he
r of

s

 A.

r a

 the

s, and

e

are

s of

s
the
Spreadsheet usage
A number of spreadsheets are available to help the DBA in estimating table and
sizes. These spreadsheets are available for download from the Centura Web site
Users of the hashed table spreadsheet, for example, can specify the percent fre
parameter (PCTFREE), number of rows projected to be held in the table, and pa
density. Other inputs include column names, data types, average data length for
column, and declared data length of each column. The spreadsheet calculates t
number of rows contained in a page, number of row pages required, and numbe
rows for the CREATE CLUSTERED HASHED INDEX statement. With the
availability of these spreadsheets, the task of estimating the size of a database i
largely automated. The following example in Figure A illustrates one of the
spreadsheets.

Three specific spreadsheets are available:

• Calculation of space requirements for a standard, non-hashed table.

• Calculation of space requirements for a hashed table (one which has a
CLUSTERED HASHED index placed on it). This is the example in Figure

• Calculation of space requirements for a BTree index.

Note that there is no spreadsheet available for calculating space requirements fo
CLUSTERED HASHED index itself. This is because there is no physical space
allocated uniquely to this type of index, rather the effect of the index is to change
storage allocation method used for the subject table.

Formulas for estimating database size
The database size can be calculated by summing up all the tables, indexes, view
a fixed amount of overhead, as follows:

DatabaseSize = ∑RegularTables + ∑ΗashedTables + ∑Indexes + ∑Views
+ FixedOverhead.
Before the size of any table may be calculated, the width of each column must b
determined. Therefore, we first introduce the formula for calculating the column
width. Then, formulas for computing sizes of various tables, indexes, and views
presented.

Note that a page is fixed at different sizes for the various implementation platform
SQLBase. In DOS, Windows (with DOS), Windows NT, OS/2, and NetWare the
page size is 1,024 (or 1K) bytes. For reasons of simplicity, we will use 1,024 bytes a
the page size in the examples of this chapter. You should remember to substitute
page size that is appropriate for your environment.
Advanced Topics Guide 11-3

Chapter 11 Estimating Database Size

ting

data
 it
mmed

d, or

 rows,
y be
Also note that the following formulas make use of the floor and ceiling functions. When deno
these, x is a floor of x, which truncates the fraction part of x (such as, 3.1=3). Also, x is a
ceiling of x, which rounds up the fraction part of x (such as, 3.1=4).

Calculation of column width
A specific formula used to compute a particular column’s width is dependent on its declared
type. The width computed is the internal width the column will have when SQLBase converts
into the internal format used by its data type. These individual column widths must then be su
in order to determine the size of the data portion of a table row.

The input to these formulas is the average external column width of each column. This is the
number of characters or digits that is typically found in the column, as opposed to the declare
maximum, size of the column. All data types are stored as variable length fields internally in
SQLBase, so for the column width calculation to be accurate for the majority of the database
the average width must be determined and used. The determination of the average width ma

Figure 11A - An example of a spreadsheet which calculates the estimated size of a table.
Note that this table is the subject of a CLUSTERED HASHED index, therefore one of the
calculations made is for the row count to be used in the CREATE INDEX statement.
11-4 Advanced Topics Guide

Formulas for estimating database size

l

 for
e the
ables

e

ce
ed

)

um-
nsid-
s in
har
ly
ng
ed

ze.

-
l-
done through either a “best guess” method or through detailed analysis of actua
column contents, whichever is more feasible.

Also, hashed tables will need another calculation done using the maximum width
each column in the table. This will be needed later in order to accurately calculat
packing density for the hashed file. Since SQLBase reserves space for hashed t
based on the row estimate in the CREATE CLUSTERED HASHED INDEX
statement, multiplied by the maximum possible row width (which is the sum of th
maximum widths of all non-LONG VARCHAR columns), the calculation of this
maximum row width allows the DBA the highest level of control over the this spa
allocation process. This calculation does not need to be performed for non-hash
tables.

Data type Column width

Character Number of characters in the column (maximum 254 bytes). For example, a
character type data “Atlanta” is 7-bytes long.

(Note: Physically, SQLBase stores both CHAR and VARCHAR columns the
same way. However, you should continue to use both data type to explicitly
document the logical data type of the attribute. For example, CHAR(8)
implies the attribute always contains eight characters; whereas, VARCHAR(8
means the attribute may contain up to eight characters.)

Number (NumberOfDigits+2)/2+1 bytes. For instance, for a 10 digit integer, the
length is (10+2)/2+1=7 bytes.

Date 5 bytes.

Date/Time 12 bytes.

Long varchar 12 bytes consisting of the first physical page number, last physical page n
ber, and column size are stored in a base row page. These 12 bytes are co
ered as the column width stored in a base row page. The actual data reside
long varchar pages. SQLBase stores only one column on each long varc
page. For example, if a column is declared as LONGVAR but its length is on
one byte, an entire long varchar page is allocated to store this one-byte lo
varchar data. A general formula for the number of long varchar pages requir
for the data is (for each long varchar column):
Nbr of Long Pages per Long Column = size of long varchar in bytes/(1024-
61).
The number of long varchar pages is included in the calculation of a table si

(Note: SQLBase stores zero length strings defined as either CHAR or VAR
CHAR as NULL (i.e., requires no physical storage); on the other hand, co
umns defined as LONG VARCHAR require a minimum of one LONG
VARCHAR page (i.e., 1024 or 2048 bytes depending on the page size.)
Advanced Topics Guide 11-5

Chapter 11 Estimating Database Size

for the

called
n

er,
 a
ws:

ow

We define DataLength as the sum of all column widths in a row, which is used for the
table size calculation.

DataLength=∑All Column Widths.

Table size calculations
Based on the derived DataLength, we can compute the estimated regular (or non-
hashed) table size or the estimated hashed table size, whichever is appropriate
table in question.

Calculation of regular table size
To compute the size for a regular table, we first obtain the DataLength derived from
the previous discussion. We must also have an estimate of the number of rows,
NbrOfRows below, which will be stored in the table. From these two inputs, we ca
calculate the following size estimates.

Calculation of hashed table size
Computing the size of a hashed table is similar to that for a regular table. Howev
we need to take into consideration the desired packing density when estimating
hashed table size. Therefore a new result parameter must be calculated as follo

• Nbr Hashed Table Pages = Nbr Row Pages / packing density.

Parameter Formula

Row Length Includes the row overhead, such as row header, and slot table entry. R
Length = 18 + (2 x number of columns) + DataLength.

Row Length with Slack Considers the PCTFREE parameter specified in the CREATE TABLE
statement (which defaults to 10%). Row Length with Slack = Row
Length x 100 /(100 - PCTFREE)

Usable Row Page Size In SQLBase, page overhead is 86 bytes.
Usable Row Page Size = 1024 - 86 = 938 bytes.

Rows per Page (Usable Row Page Size / Row Length with Slack).
If this formula evaluates to less than 1, then make it 1.

Nbr Row Pages (NbrOfRows / Rows per Page), where NbrOfRows is the projected
number of rows in the table.

Nbr Long Pages NbrOfRows x Νbr Long Pages per Long Column.

Total Data Pages Nbr Row Pages + Nbr Long Pages
11-6 Advanced Topics Guide

Formulas for estimating database size

on,
dth
 an

e for

he

alue
This calculation appears at the end of table 4, which follows.

BTree Index size calculations
When a table is associated with a BTree index through the CREATE INDEX
command, we need to calculate the BTree index size. To perform this computati
we first obtain the length of the index’s symbolic key by performing the column wi
calculation for each column named as a subject of the index. We must also have
estimate of the number of rows, called NbrOfRows below, which will be stored in the
subject table. From these two inputs, we can calculate the following size estimat
the lowest level of an index (leaf pages of the index structure) as follows:

Parameter Formula

Row Length 18 + 6 + (2 x number of columns) + DataLength.
The “6” in this equation accounts for storage of the processed hash key with t
row.

Row Length with Slack Row Length x 100 / (100 - PCTFREE)

Usable Row Page Size 1024 - 86 = 938 bytes.

Rows per Page (Usable Row Page Size / Row Length with Slack).

Nbr Row Pages (NbrOfRows / Rows per Page).

Nbr Long Pages NbrOfRows x Νbr Long Pages per Long Column.

Nbr Hashed Table
Pages

(See packing density discussion above for detailed explanation)

Nbr Hashed Table Pages = Nbr Row Pages / packing density.

Total Data Pages Nbr Hashed Table Pages + Nbr Long Pages

Parameter Formula

Key Length Key Length = ∑ average data lengths of columns in the key.

Index Entry Length 9 + number of columns in index + Key Length.

Usable Index Page Size (1024 - 74) x (100 - index PCTFREE) / 100 (Note that the default v
for PCTFREE is 10%).

Index Entries per Page (Usable Index Page Size / Index Entry Length).

Nbr Index Pages Nbr of Rows / Index Entries per Page�.
Advanced Topics Guide 11-7

Chapter 11 Estimating Database Size

ble
, if a

ded

ary)
n a file
h

om
rsion

r
Estimation of overhead for views
For each view there is fixed overhead and a variable overhead depending on the
complexity of the view. Note that when a view references another view, the varia
overhead of the referenced view is added to the view being defined. For example
view refers to two simple views whose variable overhead is 5 pages each, the
complex view will have a body which is 5+5=10 pages plus its own variable
overhead. In other words, the variable overhead of each referenced view is inclu
in the variable overhead of the view that references it.

The size of a view can grow rapidly if it references other views which in turn
reference yet other views.

Fixed amount of overhead
This calculation accounts for the overhead of the system catalog (or data diction
tables in the database. SQLBase maintains the skeleton system catalog tables i
called START.DBS. SQLBase uses the file as a “template” for a database file. Eac
new database is created originally from a copy of START.DBS (the CREATE
DATABASE command and the API call sqlcre automatically copy START.DBS to the
database named in the command). The size of START.DBS therefore has to be
included in the fixed overhead estimate for a database. This size may change fr
one release of SQLBase to another, and should be obtained from the current ve
when performing the calculations. For our examples, we are using the size of
START.DBS from SQLBase version 5.1.4.

Parameter Formula

Fixed Overhead 12 x 1024 bytes (12 pages)

Variable Overhead ((Nbr of Tables x 150) + (Nbr of Columns x 170)) bytes

Variable Overhead of
other views

The sum of the variable overhead of all views referenced by this
view:

∑ Variable Overhead for all views

Total View Overhead
in Pages

(Fixed Overhead + Variable Overhead + Variable Overhead of othe
views) / 1024 pages.
11-8 Advanced Topics Guide

Formulas for estimating database size

ither
e
ead

bject
es, so

mber
of
There is a fixed amount of overhead for various physical objects. If the object is e
a regular or a hashed table, the overhead is 12 pages. For non-hash indexes, th
overhead is 2 pages. Therefore, the formula for the total amount of system overh
for a database is:

Total Fixed Overhead Pages = (Nbr Tables x 12) + (Nbr non-hash
Indexes x 2) + (Size of START.DBS / 1024) .
In actuality, there is also some variable overhead associated with each type of o
which depends on the current size of the object. As the size of the object increas
will this overhead rise slightly. For example, the number of bitmap pages which
SQLBase uses to manage page allocation for data rows will increase with the nu
of rows, however this increase is very small, at approximately 1K for every 8MB
data. Because of the tiny incremental nature of this overhead, formulas are not
presented here to accommodate their inclusion in the overall estimation.
Advanced Topics Guide 11-9

Chapter 11 Estimating Database Size

ved

ould
the
ach
Example of size estimation
We present a simple database to explain the estimation of its size using the deri
formulas. Assume that a packing density of 70% is desired for the CUSTOMER
table, which is the subject of a hashed index.

Syntax Key

INDE X NA ME
 colum n 1
 colum n 2

cardinali ty

U/N/H

key length
TABLE NA ME

total by tes occ urances

rec len Pct free # pages

prim a ry key

fo reign key
U nique N o n-uniq ue H as h ed

XP K_CUSTOM ER
CUST OM ER_ID

UH
50,000

XP K_CONTAC T
CUST OME R_ID
CO NTACT_NA ME

U

175,000CO NTAC T
175,000

25

CUST OME R_ID
CONTA CT_NAME

CUSTOM ER_ID

192,500130

22,750,000

793850

2,500,000

CU STO ME R
50,000

15

CUSTO MER_ID

Figure 11B - Diagram of database following size calculations. All spaces
concerning size information, with the exception of row occurrence estimates, w
only be filled in following completion of the size estimation exercise. Note that
only data derived directly from the size estimates is the number of pages for e
table. The “rec len” and “total bytes” fields reflect the external width of the
11-10 Advanced Topics Guide

Example of size estimation

the
The SQLBase Data Definition Language (DDL) statements used to create this
database, and associated views, follows:

CREATE TABLE CUSTOMER
(CUSTOMER_ID CHAR(5) NOT NULL,
CUSTOMER_NAME VARCHAR(25),
CUSTOMER_ADDR VARCHAR(50),
CUSTOMER_RATING CHARACTER(10),
PRIMARY KEY(CUSTOMER_ID))
PCTFREE 15;
CREATE TABLE CONTACT
(CUSTOMER_ID CHAR(5) NOT NULL,
CONTACT_NAME VARCHAR(25) NOT NULL,
CONTACT_PHONE DECIMAL(10,0),
CONTACT_TEXT LONG VARCHAR,
PRIMARY KEY(CUSTOMER_ID, CONTACT_NAME),
FOREIGN KEY CUSTKEY (CUSTOMER_ID) REFERENCES CUSTOMER
ON DELETE RESTRICT)
PCTFREE 25;
CREATE UNIQUE CLUSTERED HASHED INDEX XPK_CUSTOMER
ON CUSTOMER (CUSTOMER_ID)
SIZE 47628 ROWS;
CREATE UNIQUE INDEX XPK_CONTACT
ON CONTACT (CUSTOMER_ID, CONTACT_NAME)
PCTFREE 10;
CREATE VIEW BAD_CUSTOMER AS
SELECT CUSTOMER_NAME, CUSTOMER_ADDR
FROM CUSTOMER
WHERE CUSTOMER_RATING=’POOR’;
CREATE VIEW BAD_CONTACTS AS
SELECT C.CUSTOMER_NAME, CN.CONTACT_NAME, CN.CONTACT_PHONE
FROM BAD_CUSTOMER C, CONTACT CN
WHERE C.CUSTOMER_ID = CN.CUSTOMER_ID;
After an analysis of the data that will be loaded to the database was performed,
following data on average column widths was derived:

Table Column
Maximum

Width
Average
Width

Customer Customer_id 5 5

Customer_name 25 10

Customer_addr 50 30

Customer_rating 10 5
Advanced Topics Guide 11-11

Chapter 11 Estimating Database Size

a
The estimation of the database size is performed as follows:

1. CUSTOMER:

Data Length=∑Column Widths of Customer_ID, Customer_Name,
Customer_Addr, Customer_Rating.

Data Length=5+10+30+5=50

Row Length=18+6+(2x4)+50=82

Row Length with Slack=(82x100)/(100-15)=97

Rows per Page=(1024-86)/97=9

Nbr Row Pages=50,000/9=5,556

Nbr Hashed Table Pages=5,556/.70=7,938.

(Note that the .70 figure is desired packing density)

Since there are no LONG VARCHAR columns in this table, the total dat
pages equals the number of hashed table pages.

2. CONTACT:

Data Length=∑Column Widths of Customer_ID, Contact_Name,
Contact_Phone, Contact_Text.

Data Length=5+15+(((10+2)/2)+1)+12=39

Row Length=18+(2x4)+39=65

Row Length with Slack=(65x100)/(100-25)=87

Rows per Page=(1024-86)/87=10

Nbr Row Pages=175,000/10=17,500

Nbr Long Pages=175,000x1=175,000

Total Data Pages=17,500+175,000=192,500

Contact Customer_id 5 5

Contact_name 25 15

Contact_phone 10 10

Contact_text 500 100

Table Column
Maximum

Width
Average

Width
11-12 Advanced Topics Guide

Example of size estimation

ize in
3. The following is for the BTree index calculation for XPK_CONTACT.

Key Length=5+15=20

Index Entry Length=9+2+20=31

Usable Index Page Size=(1024-74)x(100-10)/100=855

Index Entries per Page=855/31=27

Nbr Index Pages=175,000/27=6482

4. Views:

The first calculation is for the BAD_CUSTOMER view:

fixed overhead=12x1024=12288 bytes

variable overhead= (1x150)+(2x170)=490 bytes

variable overhead of other views = 0

total overhead of the view=(12288+490+0)/1024=13 pages

The next calculation is for the BAD_CONTACTS view:

fixed overhead=12x1024=12288 bytes

variable overhead= (2x150)+(3x170)=810 bytes

variable overhead of other views = 490

total overhead of the view=(12288+810+490)/1024=14 pages

5. Fixed amount of overhead:

(2x12)+(1x2)+(602,112/1024)=614 pages

6. Thus, the estimated size for the database is:

 7,938+192,500+6,482+13+14+614=207,561 pages.

Since each page is 1024 bytes, or 1K, and one megabyte is 1024K, the s
megabytes is the number of pages divided by 1024:

207,561 / 1024 = 203 megabytes.
Advanced Topics Guide 11-13

a
s

ncy.

Advanced Topics Guide
Chapter 12

Result Sets

In this chapter we:

• Introduce the concept of the result set, which is the intermediate storage are
used by SQLBase when processing a SELECT statement which retrieve
multiple rows from one or more database tables.

• Cover the following detailed characteristics of result sets:

• Structure

• Contents

• Life cycle

• Evaluate the implications that SQLBase’s result sets have for program
processing requirements, especially in the areas of locking and concurre
Advanced Topics Guide 12-1

Chapter 12 Result Sets

of a
 of
s.

he
s of
ment.

e of
le

g to
bility

e by
er is

 are

dex
bject
y
e
n this
t is
Introduction
A result set is a temporary index, possibly associated with a temporary table for
certain complex queries, which contains a set of data that represents the result
SELECT statement. Since most SELECT statement executions cause a number
rows to be returned from SQLBase, the result set typically consists of many row
The contents of the result set’s leaf pages (the bottom level in the B+ index tree
structure) are pointers (ROWIDs) to the rows of the table (or tables) involved in t
SELECT. Alternatively, for some complex queries these ROWIDs point to the row
a temporary table containing the data values needed to satisfy the SELECT state
The result set is stored on disk in a temporary file, and one or more rows are
transmitted from it to the client workstation when requested via the FETCH
command.

The utilization of result sets is an important feature of SQLBase. Through the us
result sets, SQLBase decreases response times for client workstation users whi
increasing their flexibility to position themselves within the result set when
performing browse operations. SQLBase also offers a number of options relatin
the processing of result sets which allow the system designer to balance the flexi
of result set processing with the concurrency requirements of his application.

Characteristics of result sets
The structure of result sets is standardized in a manner to allow their efficient us
the SQLBase server. However, the content of a result set as it exists on the serv
determined in part by the nature of the SELECT statement which created it. The
timing of the creation of result sets depends in part on the manner in which rows
fetched from it by the program which issued the SELECT statement originally.

Physical structure of result sets
The structure of result sets as they are stored in the server is that of a B+Tree in
similar to any other SQLBase index. However, the result set is not a permanent o
as user-defined indexes are and does not possess a name, nor is it owned by an
database. It is owned by the transaction that created it, and is associated with th
cursor used to process the SELECT statement whose results it represents. Whe
cursor is disconnected, or used to prepare another SQL statement, the result se
dropped from the system.

The subject of the unique index structure in a result set is the ROWID column
contained within each leaf entry. To summarize chapter 8, Database Pages, the
following ordered list of elements makes up the ROWID field, which serves to
uniquely identify every row in an SQLBase database:

• Physical page number that the row resides on.
12-2 Advanced Topics Guide

Characteristics of result sets

ue
and

 row

the
le
ubject

 the
ge.
 the

ows
mns
ear in
 row
le row
e

egate
• Slot number within the page that the row occupies.

• Row serial number, which is assigned at the time of insertion and is uniq
among all rows. This number is never updated during the life of the row,
is never reused for any other row following the deletion of this row.

• Update serial number of the row. This number is changed each time the
is updated.

Note that the first three elements will always uniquely identify a single row, while
addition of the fourth element serves to further identify that unique row for a sing
state, or change level. When the row changes to a new state, through being the s
of an UPDATE command which modifies one or more columns, then the fourth
element of the ROWID changes while the first three remain the same. Also, only
first two elements are needed by SQLBase to actually retrieve the row from stora
The third element serves to verify that the same row still occupies this position in
database, and that the slot has not been reused by some other row following the
deletion of this row.

Logical contents of result sets
Result sets are composed of ROWIDs which point to either base table rows, or r
in a temporary table, depending on the query that was executed. Result set colu
contain base table ROWIDs when the query references data columns as they app
the actual table rows, or when a calculation or formula is to be applied to a single
column value. These ROWIDs are then used at fetch time to access the base tab
where the data is located. Result set ROWIDs point to a temporary table when th
column to be returned is a value calculated from more than one input, or an aggr
function, which may use one or more rows of the base table as input.
Advanced Topics Guide 12-3

Chapter 12 Result Sets

ntry
 rows

ws in
ow or
s

or
.

Figure 12A - Result set from a single table query with no derived data. The only e
in the leaf pages of the index tree is the ROWID of each of the Customer table’s
which qualifies for inclusion (in this case, all rows).

In Figure A the result set of a simple one-table query is shown. For SELECT
statements such as this, the result set consists of the ROWIDs of the selected ro
the Customer table. When the client performs a fetch against the result set, the r
rows returned are identified by the ROWID at the cursor position. As the data row
are accessed, the columns requested by the query are retrieved and formatted f
return to the client.

Select Ac ctnum , Acctnam e from C ustome r;
Query

RO W ID of row 1

RO W ID of row 2

RO W ID of row 3

RO W ID of row n

R es u lt se t le a f en tr ies
12-4 Advanced Topics Guide

Characteristics of result sets

 of
cted

ly
ID

r in
ual
al

t this
s
Figure 12B - Result set from a two table join. ROWIDs identify the qualifying rows
each table, and allow SQLBase to retrieve the appropriate columns from the sele
rows of the base tables at FETCH time.

In figure B, the result set of a simple two-table join is shown. Since all of the data
columns requested by the query are present in the rows of the two tables, the on
columns in the result set are the ROWID pointers for the joined rows. Each ROW
pair in the result set satisfies the join condition, which is that the account numbe
the Customer row matches the account number in the Invoice row. When the act
rows are fetched by the client, SQLBase will use the ROWIDs to retrieve the actu
data values requested by the query from both tables involved in the join. Note tha
query will result in one row for each invoice a customer has on file, in other word

Select C.A cctnum, C .Acctna me, I.Invoice_am t
 from C ustom er C , Invoice I
 w here C .Acc tnum = I.Acctnu m;

Custom er
table
RO W IDs

ROW ID for row 1

ROW ID for row 2

ROW ID for row 3

ROW ID for row n

R es u lt se t le a f e ntr ie s

Query

Invoice
table
RO W IDs

RO W ID for row 1

RO W ID for row 2

ROW ID for row 3

RO W ID for row n
Advanced Topics Guide 12-5

Chapter 12 Result Sets

rary
this
et.’

rary
client
ble
der to
ry in

 is
uery
each customer number will be repeated in multiple rows for each invoice that
customer has.

Figure 12C - Result set from a two table join aggregate query. Since this query
contains aggregate data in the form of the SUM (I.Invoice_amt) column, a tempo
table is built to hold the result set data. The result set itself points to the rows of
temporary table. This temporary table is also sometimes called a ‘virtual result s

The aggregate query in Figure C has a significant difference from the previous
queries we have examined, in that its result set contains the ROWIDs of a tempo
table. This temporary table contains the actual row values to be sent back to the
in response to fetch statements. These values must be stored in a temporary ta
otherwise the entire aggregate set of data would have to be retrieved again in or
recalculate the result of the function. The query in figure C contrasts with the que
figure B in that it returns a single row for each customer. This row will contain the
total value of all invoices for that customer, calculated by the SUM function which
applied to the invoice amount field. SQLBase creates a temporary table for any q
that includes aggregate functions, complex views, or queries containing the
DISTINCT, GROUP BY, HAVING, UNION, or ORDER BY clauses.

Tem po rary table
 ROW ID s

ROW ID for row 1

ROW ID for row 2

ROW ID for row 3

RO W ID for row n

Re su lt s e t le a f e n trie s

C.Acctnum

Re s ult se t tem porary ta ble

Co lum n 2

 S U M of
I.Invoic e_ am t

Colum n 3

VA LUE for row 1

VALUE for row 2

VALUE for row 3

VALUE for row n

C olum n 1

C.Acctnam e

VALUE for row 1

VALUE for row 2

VALUE for row 3

VALUE for row n

VALUE for row 1

V ALUE for row 2

V ALUE for row 3

VALUE for row n

Select C .Acctnum , C.Acctname, SUM(I.Invoice_am t)
 from C ustom er C , Invoice I
 where C.Acctnum = I.Acctnum
 group by C .Acctnum , C.Acctname;

Query
12-6 Advanced Topics Guide

Characteristics of result sets

ex
.
y for

he
rm

ed
ave
inted

the

ble
the
 is

nt is
uffer
ent
age

hich
 are

m,

ll

sult
et,
ing

.

rding
ich
This delineation of queries that require calculations, aggregation, or other compl
processing determines variations in other characteristics of result set processing
Result sets which contain the ROWIDs of base tables possess a greater flexibilit
processing by SQLBase. These result sets offer some capabilities to client
transactions that the other result sets do not. For the remainder of this chapter, t
differentiation between these two types of result sets will be made through the te
“derived”. When a result set contains the ROWIDs of base tables only, where no
temporary tables are built, all the data needed to satisfy the query can be retriev
from the base table rows. More complex queries, such as aggregation queries, h
data derived from the processing of the query present in the temporary table, po
to by the result set, for subsequent transmission to the client.

To summarize, the two basic types of result sets are:

• The non-derived result set, which contains only ROWIDs of data rows in
base tables.

• The derived result set, which contains a ROWID pointer to a temporary ta
that contains at least one column of actual data values which represent
result of some calculation or function in the query. This type of result set
also called a “virtual table”.

Population of result sets
For most queries, the first part of the result set is built when the SELECT stateme
the subject of an EXECUTE. When there are sufficient rows to fill one message b
to the client, these rows are transmitted and the client may proceed. After the cli
has performed sufficient FETCH operations to exhaust the contents of the mess
buffer, a request is made to the server for another buffer of rows. The server then
continues to build sufficient rows in the result set to fill another message buffer, w
is transmitted to the client workstation. This process continues until all rows that
eligible for inclusion in the result set have been accessed. Note that this process
assumes a sequential access of result set rows by the client workstation’s progra
starting at row 1 and proceeding through the result set, one row at a time, until a
rows are retrieved.

Of course, the program at the client workstation may not proceed through the re
set in this orderly manner. When the program explicitly repositions in the result s
SQLBase may be required to complete building the entire result set prior to send
the requested row back to the client. When this occurs, the user at the client
workstation may perceive a delay if the result set that must be completed is large

Also, some queries may require the completion of the entire result set prior to
returning any rows. An example of this is a SELECT statement containing the
ORDER BY clause. This clause requires that the result set rows be ordered acco
to the contents of one or more columns. If there is an index on the base table wh
Advanced Topics Guide 12-7

Chapter 12 Result Sets

lt
to

ect
 the

re
all
the

is
ess
rve

urs:

L

he
nged

IT,
ut

t

 the
r
 very
p
matches the sequence of the ORDER BY clause, then the result set may be bui
incrementally, as outlined above. However, if there is no index that can be used
satisfy the ORDER BY clause, then SQLBase will have to perform a scan of the
entire table, followed by a sort operation, in order to put the result set in the corr
sequence. Only following this sort may the first row of the result set be returned to
client.

Flushing of result sets
When result sets are no longer needed by the program that created them, they a
flushed from the server. This is analogous to dropping a database object, where
traces of the object are eliminated from the system and there is no way to bring
object back. If the result set is large, the temporary file used by the server for its
storage will also be freed. As mentioned previously, the result set table is not a
permanent object nor does it possess a name or ownership by any database. It
owned by its creating transaction, and is associated with the cursor used to proc
the SELECT statement. In the absence of any special considerations taken to prese
the result set, the result set will be flushed when one of the following events occ

• When the owning cursor is disconnected, or used to prepare another SQ
statement.

• When the program re-compiles the SELECT statement.

• When the transaction requests a COMMIT or ROLLBACK.

• When the transaction changes the current isolation mode setting.

Cursor context preservation
If the programmer has turned cursor context preservation (CCP) on, by setting t
SQLPPCX flag on, then the above rules for the flushing of the result set are cha
somewhat. Specifically, the program’s result sets are maintained across a COMM
allowing the program to perform update operations and commit the results witho
losing its current place in the result set. Also, for programs running in the RL
isolation level, and not performing DDL commands, result sets will be kept intac
across the execution of a ROLLBACK command.

This flag allows programs to browse large result sets, perform updates based on
result sets, commit or rollback those updates as desired, and then continue thei
browsing without having to reestablish the result set. This makes these programs
effective in a multi-user environment, since the commit allows locks to be freed u
which other transactions may be waiting on, while the CCP feature allows the
transaction to avoid the overhead of building the same result set multiple times.
12-8 Advanced Topics Guide

Processing result sets

 for

y seem

,
thin
ed
tions

 the
s.

 to
d to

r at

may
CT
uld
ther
n

n
ing

he
ry

le
be a
g that
Processing result sets
You need to be aware of the implications that SQLBase’s use of result sets have
transactions. While the use of result sets can significantly increase the speed of
transaction execution, programs occasionally need to take steps to avoid some
anomalies caused by result set usage. These aspects of result set processing ma
all the more odd because of the behavioral variations between derived and non-
derived result sets, and the fact that many people may be unaware of the basic
processing differences in these types of queries.

Result sets are built at a specific point in time during the execution of a program
namely when a SELECT statement is executed. However, the data contained wi
the result set may be perused by the client workstation user over a more extend
period of time, particularly when browsing a large result set. This raises two ques
relating to concurrency:

• What locks are held on the rows that were used by the SELECT to build
result set? This will affect other transactions’ ability to access these row

• What happens if some other program updates a table row that was used
build the result set? This affects the timeliness of the data being returne
this transaction. Another way to ask this question would be: Does the
information in the result set represent data at the current point in time, o
the point in time that the SELECT was processed?

Note that some transactions may not be too concerned with these issues. They
only need a result set which is representative of the data at the time of the SELE
and do not care if the data has changed since that time. These transactions sho
choose a high concurrency isolation mode for execution (probably RL), so that o
transactions may perform updates without interference. The transaction may the
browse its result set without concern for the timeliness of the data.

An example of a program that may not require a high degree of concurrency is a
“orders shipped today” inquiry screen in an order processing system. A user view
this screen would not realistically expect to see an order on it that just went out t
door while he is browsing the result set of orders. The probable reason the inqui
exists is for management to identify trends and potential problems with the order
shipping process and this use does not require that the screen reflect every sing
order in real time. The accurate representation of “orders shipped today” would
batch report program that was run at the stroke of midnight, thereby guaranteein
no more orders could be added to the desired information.
Advanced Topics Guide 12-9

Chapter 12 Result Sets

n’s
r
sed
e

ated
ile
em

 row
 at a

ove
CH

 set

al
held
age is
ever,
he

 is
at
es

the
 RO

e
f the

s be

h
sult
Lock duration on result set rows
How long locks are held by result sets is determined by the executing transactio
isolation mode. The possible isolation modes are Repeatable Read (RR), Curso
Stability (CS), Release Locks (RL), and Read Only (RO). While these are discus
in detail in chapter 13, Concurrency Control, their effects on result set processing ar
summarized below.

• In RR, S-locks remain on all pages where rows from the result set are loc
throughout the life of the transaction, or the next commit or rollback. Wh
other transactions may read these rows, they will be unable to update th
until the S-locks are released.

• In CS, an S-lock is only held on the current page where the most recent
FETCHed by the client is located. Since the server passes only one row
time to the client in this mode, the page with the S-lock will be the page
occupied by the row last passed in the message buffer. The S-lock will m
to the page occupied by the next row in the result set when another FET
is performed by the client. This means that a row in a page of the result
could be updated by another transaction so long as it is not the page
containing the current row of the result set.

• In RL, no locks are held on result set rows permanently. During the actu
execution of the SELECT statement, to build the result set, one S-lock is
on each page as it is accessed, but this lock is dropped as soon as the p
no longer needed. Once the result set is built, all locks are released. How
each row in the result set is subject to one more S-lock at the moment t
fetch of that row is performed in order for SQLBase to make sure the row
not the subject of an uncommitted update from another transaction at th
point in time. This S-lock is immediately released when SQLBase finish
the fetch operation for that row.

• In RO, no locks are ever held. Row images are always made current to
SELECT execution time through the use of timestamp comparisons and a
history file which holds the prior versions of row images.

Concurrency and derived result sets
For queries which create derived result sets, or virtual tables, the remainder of th
concurrency situation is fairly simple. Since the data that makes up the results o
query is actually stored in the temporary table, any updates made by other
transactions after the result set is built will not be reflected, nor can these update
detected. There is no process that can avoid this result, such as the use of
FETCHTHROUGH or committing of the update. Also, committing the update wit
cursor context preservation on will not cause the update to be reflected in the re
12-10 Advanced Topics Guide

Processing result sets

ble is

n
For
 for
ote

ing
IDs

m in
te the

y be

ber
sult
m the

ult
d then
not
 uses
ally

age

sed”
ted.
n

is
set either. The only way to make the results of the update appear in the virtual ta
to re-execute the SELECT statement which built it.

Concurrency and non-derived result sets
On the other hand, if the result set contains no derived columns, a transaction ca
detect updates to rows, or deletions of rows, made after the result set was built.
this type of query the following sections describe the techniques and procedures
dealing with these possible updates and deletions made by other transactions. N
that in the case of insertion of new rows by other transactions that would have
appeared if they had been committed prior to the creation of the result set (mean
that they satisfied the predicates specified in the WHERE clause), these new ROW
will not appear in the result set under any conditions. The only way to include the
the result set would be to re-execute the SELECT statement in order to re-evalua
predicates against the existing set of committed data in the table.

Detecting changes in result set rows
Transactions which execute in the RR isolation mode will not have this problem,
since this mode will not allow any updates to occur to the result set. While this ma
appropriate for some transactions, they should only be executed during low
concurrency time periods, such as the middle of the night, otherwise a large num
of time-outs and deadlocks may occur. For transactions which are processing re
sets in the CS or RL isolation modes, there is a way to keep the data returned fro
result set current.

SQLBase provides this capability automatically when fetching rows from the res
set. Since this is done at fetch time, any rows that have already been fetched, an
updated by a different transaction at a later point in time (following the fetch), will
be detected. At the time that the fetch is performed from the result set, SQLBase
the ROWID stored in the result set to verify the current state of the row as it is actu
stored in the base table. It does this as part of the following process:

How SQLBase fetches result set rows

1. Access the ROWID stored in the result set row.

2. Retrieve the page using the page number component of the ROWID. This p
could either be found in a buffer or be read from external storage.

3. Check the slot specified by the ROWID slot component to make sure the “u
bit is set (first bit in slot table entry). If this bit is off then the row has been dele
If this has occurred, then SQL return code 00003 (FET NF: Row has not bee
found) is returned to the client.

4. Retrieve the row from the page using the offset specified in the slot table. Th
structure is explained in detail in Chapter 8, Database Pages.
Advanced Topics Guide 12-11

Chapter 12 Result Sets

 has
d, then
e

date
as

ed.

ewly

ncy

 in

order

RL,

 can
e

er.

g

use,
ing

 and
e. As

rk for
5. Compare the row serial number component in the ROWID to the row serial
number actually stored in the slot. If these are different, then the original row
been deleted and the slot has been reused by another row. If this has occurre
SQL return code 00003 (FET NF: Row has not been found) is returned to th
client.

6. Compare the update serial number component in the ROWID to the row up
serial number actually stored in the row. If these are different, then the row h
been updated since the SELECT statement that built the result set was process
If this has occurred, then SQL return code 00002 (FET UPD: Row has been
updated) is returned to the client, indicating the row has been updated. The n
updated row is returned to the client.

This procedure ensures that transactions processing result sets in high concurre
isolation modes can still detect modifications to the rows in their result set which
occur after the result set is built.

Maximum timeliness with FETCHTHROUGH
The process just described is only effective if the row fetched by the client is not
the workstation’s input message buffer. If the row is already in the client’s buffer
when an update takes place, then the transaction will not be able to detect it. In
to eliminate this effect, the SQLBase FETCHTHROUGH feature can allow a
transaction to execute with maximum concurrency in an isolation mode such as
while still accessing the most recent data available. By setting the
FETCHTHROUGH parameter on (via session setting or API call), the transaction
ensure that for each FETCH performed, the data will be retrieved directly from th
server, who will perform the automatic recency verification described above. The
alternative to this, with FETCHTHROUGH set off, would be that the row may be
retrieved not from the server at all, but rather from the client’s own message buff
The contents of this buffer may have been built some time before, and no longer
contain the most recent information. Because of the performance impact of usin
FETCHTHROUGH, however, you should only turn it on when you know that the
result set rows will be updated during the life of the result set.

An example of a transaction that may require this high level of timeliness is a
shipment pick transaction for a high volume warehouse. The way the transaction
might work is that while a stock clerk makes his way down an aisle in the wareho
he scans the bin numbers he passes with a bar code reader. The transaction be
executed on his hand held computer has already performed a SELECT on the
SQLBase server (connected via radio frequency modem) and built a list of items
quantities to be picked in the same order that the clerk will traverse the warehous
the clerk scans a bin, the transaction executes a FETCH of that bin’s row in the
Warehouse table to see how many of the bin’s items should be picked by the cle
conveyance to the packing area. Since orders are being placed constantly, the
12-12 Advanced Topics Guide

Processing result sets

t
e

ping
hich
hased

ws as
 in

imes
ly be
and
lso,
ment
to
transaction executes with FETCHTHROUGH on in order to be aware of the lates
order information that may affect the quantity to pick from this bin. In this way, th
clerk will be performing warehouse picks for orders which were received after he
started his run through the warehouse. This thoroughness on the part of the ship
process helps to decrease the time required to turn around a customer’s order, w
helps the company achieve several of the strategic business goals that they purc
the system to accomplish.

The trade-off involved in guaranteeing the most recent data through use of the
FETCHTHROUGH feature is an increase in network message traffic for the
transaction. This is because instead of filling the message buffer with as many ro
possible to transmit to the client, the server will now place only one row at a time
the buffer. This will cause the client workstation to experience slower response t
when processing large result sets. For this reason, FETCHTHROUGH should on
used on those situations where it is critical to have the most recent information,
there is reason to believe that the information is in a constant state of change. A
anytime you know the row has been updated, such as through an UPDATE state
issued in another cursor of your program, you should set FETCHTHROUGH on
ensure that the update will be reflected in the result set.
Advanced Topics Guide 12-13

f the

n

ine
.

ing
ng

Advanced Topics Guide
Chapter 13

Concurrency Control

In this chapter we:

• Introduce the topic of concurrency control, which is the way a SQLBase
server makes each client workstation appear as if it were in sole control o
database.

• Discuss the concept of transaction serialization, which dictates the
requirements for inter-leaving transaction executions in a manner which
eliminates interference between transactions and makes each transactio
individually recoverable.

• Explain the various types of locks SQLBase uses to control transaction
executions, and the characteristics of these locks.

• Delineate the various isolation levels available in SQLBase, which determ
how long certain types of locks are held during a transaction’s execution

• Explain how to select an appropriate isolation level for a program, balanc
the trade-offs of data integrity and maximum performance for all executi
transactions.
Advanced Topics Guide 13-1

Chapter 13 Concurrency Control

rver,

n.
same

se and
s are
ase

be
e

are
plete
hich
ase.
es
d on
r the

base
Introduction
The topic of concurrency control addresses the problems faced by SQLBase in
supporting a multi-user environment. When users are at their workstations using
some type of client software, which could be a SQLWindows application, Quest,
WinTalk, or some other program, and are connected to a SQLBase database se
they expect the results of their programs to be exactly the same as if they were
executing against a local copy of the database contained on their own workstatio
Users want to remain unaware that many other users are also connected to the
database and are using it in a variety of ways. Unfortunately, there are problems
inherent in multi-user database access that must be considered by both SQLBa
the application developer in order to realize the users’ objective. These problem
caused by the pitfalls inherent in allowing many users to access the same datab
concurrently. The topic of concurrency control addresses the software mechanisms
used by SQLBase to overcome these difficulties.

The unit of work that is the subject of the concurrency problem is the transaction
(which is discussed at length in Chapter 5, Transaction Definition). One of the key
goals of concurrency control is that either all updates of a transaction are made
permanent if its execution is successful, or it otherwise has no effect at all on the
shared database. The other goal of concurrency control is that transactions not
allowed to interfere with each other. Each transaction should appear to have sol
control over the shared database without concern for other transactions whose
execution is being conducted simultaneously by SQLBase.

Transaction serialization
Transactions are executions of programs against the shared database which are
delineated by an implicit start when the program connects to the database, and
ended through either a commit or a rollback command. Transactions which com
successfully signal this event to SQLBase through the COMMIT command, at w
time the changes made by the transaction are made permanent within the datab
Unsuccessful transactions terminate with the ROLLBACK command, which caus
SQLBase to back-out all changes to the database that were previously performe
behalf of the transaction. If the program continues to perform database calls afte
execution of a COMMIT or ROLLBACK, a new transaction is considered to have
begun. A rollback of the transaction may occur for a variety of reasons besides
program request (as indicated through the program issuing the ROLLBACK
command) including program failure (abort), system failure (OS abend), or
environmental failure (power failure). If any of these events occur, then SQLBase
must ensure that all non-committed transactions are rolled back so that the data
never appears to have been effected by them.
13-2 Advanced Topics Guide

Transaction serialization

ta
ed
ects

use of
se
 are

shion,
ns

e
 by

re

A transaction may have two possible effects as a result of its execution:

• Effects on data through the execution of INSERT, UPDATE, and DELETE
DML statements.

• Effects on other transactions, where the other transactions have read da
written by this transaction. These other transactions may use uncommitt
data to perform further database alterations, thereby proliferating the eff
of this transaction’s updates.

The effects of a transaction that were made directly to the database through the
DML statements are eliminated through the performance of a rollback by SQLBa
using the record images that are kept in the log files (the details of this operation
covered in Chapter 14, Logging and Recovery). Eliminating the secondary effects on
other transactions is where the mechanism of database locks comes into play. These
locks are the mechanism used to ensure that transactions occur in a serialized fa
thereby allowing their recovery without impacting the integrity of other transactio
which may otherwise have been dependent on data created by an uncommitted
transaction.

Figure 13A - Example of transaction dependency without database locking wher
Transaction 2 should not be allowed to commit since it depends on data supplied
the uncommitted Transaction 1. This is not a serialized execution, and is therefo
only recoverable by rolling back Transaction 2 along with Transaction 1, called a
“cascading abort.”

Tra nsaction 1 Transac tion 2
UPDATE order
 W HERE ordno = 1
 SET status = 's';

S ELECT order
 WHE RE ordno = 1;
IF status = 's' THEN
UPDA TE cust-acct
 WHE RE acctno = order.acctno1
 SE T balance = balance + order.ordtotal;

1

o

1

o

1
s

Databas e

ROLLBACK

COMMIT

Correct restored
im age after both
transactions aborted

[not allowed]

5663
$46

5663
$46

5663

$132
Advanced Topics Guide 13-3

Chapter 13 Concurrency Control

ction
le
rted

data.

n,

ly be
g the

mpts
ntil
,

 in
An example of secondary transaction effects is shown in Figure A, where transa
2 has read data from transaction 1 prior to transaction 1 committing. This examp
illustrates the impact of not having locks, which is that transaction 2 must be abo
due to the request of transaction 1 to rollback rather than commit. This cascaded
abort of transaction 2 is required to preserve the semantic integrity of both
transactions, since allowing transaction 2 to commit would propagate inaccurate
The alternative of not processing the rollback request of transaction 1 would also
allow inaccurate data to remain in the database.

Figure 13B - The same as Figure A, except with locks. Transaction 1 places an
exclusive lock on the row it updates, which causes Transaction 2 to wait until
Transaction 1 completes prior to reading the record. This is a serialized executio
and both transactions are fully recoverable through rollback techniques.

Figure B shows the same two transactions executing with database locking
performed. Following the update of the ORDER row by transaction 1, SQLBase
places an exclusive lock on the page containing the row. This type of lock can on
held by one transaction at a time and blocks all other transactions from accessin
page (more detail on locks follows later in this chapter). When transaction 2 atte
to read the ORDER row, via a SELECT statement, it is placed into a wait state u
the exclusive lock is released. During this time, transaction 1 requests a rollback
which is performed. Following the rollback, the exclusive lock is lifted on the
ORDER row, and transaction 2 is allowed to continue. Notice that the row image
returned to transaction 2 is not the one that existed at the time of its request, as

Transactio n 1 Transac tion 2
UPDATE order
 W HERE ordno = 1
 S ET status = 's';

1

o

1

o

1

s

D atabase

ROLLB ACK

CO MMIT

Correct restored im age
after transact ion 1
aborted

read

w r ite

X -L o ck

[w a it fo r X -Loc k re leas e]

SE LEC T order
 W HE RE o rdn o = 1 ;

IF s ta tus = 's ' T HE N
UP D ATE c ust-acc t
 W HE RE ac ctn o = o rde r.ac c tno 1
 S ET b al ance =ba lance + order . ord to t a l;

re ad

[upda te no t pe r fo rm ed]
13-4 Advanced Topics Guide

Lock types and scope

ifies
se

n

h
.
de:

ord
ng is
t of

o lose

ill

te in a
utions
ect to
IFO
,

le

by
ith
Figure A, but rather the restored image which existed prior to modification by
transaction 1. Since the status value is no longer ‘s’, transaction 2 no longer mod
the CUSTOMER row as in Figure A, but terminates with a COMMIT anyway. The
transactions are now serialized, they no longer execute in an inter-leaved fashio
which allows them to affect each other’s execution.

This example is one of a number of ways in which transactions may interfere wit
each other’s correct execution through their interaction within a shared database
Other common problems that may occur due to lack of concurrency control inclu

• Lost Updates

Lost updates occur when two or more transactions retrieve the same rec
and make successive updates of that same record. If no method of locki
used, transactions can overwrite recent modifications without the benefi
seeing the newly updated record.

• Uncommitted Dependency Problem

Rollbacks issued by one transaction can also cause another transaction t
updated data if no locking protocol is used. If a record is updated by one
transaction but not committed, then subsequently updated by a second
transaction with no commit performed, a rollback by the first transaction w
also rollback the second transaction's updated data.

In order to eliminate these problems, SQLBase ensures that transactions execu
strict serialized fashion through the use of database locks. These serialized exec
achieve the same effect as executing each transaction in serial fashion, with resp
all other transactions, such as would happen if they were dispatched through a F
(First In First Out) queue. Of course, SQLBase does not accomplish this by FIFO
since only through concurrent executions can the speed that is required for an
effective RDBMS be achieved. When viewed conceptually, however, for any sing
transaction the effect of its execution is exactly the same as if it were executed
serially, without other transactions present in the system.

Lock types and scope
SQLBase employs two mutually exclusive types of locks: Shared Locks (S-Locks),
and Exclusive Locks (X-Locks). An alternative terminology that is sometimes used
refers to S-Locks as read locks and to X-Locks as write locks. The one other type of
lock which SQLBase uses on a temporary basis is the Update Lock (U-lock), which is
sometimes called incremental lock because of its transient nature. These locks are
placed implicitly (that is, without being specifically requested by the transaction)
SQLBase in response to the various DML commands issued by a transaction, w
one exception. This exception is the ‘FOR UPDATE OF’ subclause of the SELECT
Advanced Topics Guide 13-5

Chapter 13 Concurrency Control

ate

 when
ck,
-lock

 may

cks

 are
er
 an X-

d
,

,
ly.
e or
o an
e to
d

d on

re
ill in

ding on
command, which causes an explicit U-lock to be placed in anticipation of an upd
occurring later within the transaction.

S-locks
With an S-lock, more than one simultaneous transaction can lock the record;
therefore, more than one transaction can access the record. S-locks are applied
a transaction reads data via a SELECT statement. When data is held by an S-lo
inserts, updates, and deletes, which require X-locks, are not allowed. Once the S
is removed, that is, once there is again only one transaction accessing the data,
inserts, updates, and deletes are permissible (X-locks are allowed). A transaction
upgrade an S-lock to an X-lock only if there are no other transactions holding S-lo
on the same data.

X-locks
With an X-lock, only one transaction at a time can use or lock the data. X-Locks
applied to data on inserts, updates, and deletes. While the X-lock is in effect, oth
transactions cannot access the data for any purpose. Transactions cannot place
lock on data while an S-lock on the data is in effect for some other transaction.

U-locks
Transactions place U-locks when they have retrieved data with a clear intent to
update. This is usually done internally by SQLBase in order to avoid deadlock
situations, such as when building a result set for a UPDATE ... WHERE comman
that will affect multiple rows. Only one U-lock can be held on a page at one time
similar to X-locks, but this single U-lock can coexist with S-locks, unlike X-locks.
However, when the transaction holding the U-lock wishes to perform the update
which requires upgrade of the U-lock to an X-lock, then the rules for X-locks app
This means that any S-locks that may have been coexisting (placed either befor
after the U-lock was set) with the U-lock must be released prior to the upgrade t
X-lock taking place. These characteristics of U-locks make them less susceptibl
deadlock situations, as will be seen later in the discussions on isolation levels an
index locking.

The U-lock is the one lock in SQLBase that can be set explicitly. Whenever a
transaction issues a SELECT ... FOR UPDATE OF command, U-locks are place
the pages of the result set. If the program later issues an UPDATE ... WHERE
CURRENT OF command referring to the cursor of the SELECT, these U-locks a
upgraded to X-locks for the remainder of the transaction. Any U-locks that are st
place are allowed to downgrade to S-locks when the cursor under which the SELECT
command was executed is used to prepare and execute a new statement (depen
the isolation level in effect).
13-6 Advanced Topics Guide

Lock types and scope

e to

e
rd

 that
ction.
ages
the
ement
urs
ation

ntext
r
sor
Lock compatibilities
The following table summarizes the capabilities of each particular type of lock to
coexist with the other types.

Note: *While S-locks and U-locks may co-exist when they are placed, the S-locks will hav
be released before the U-lock may be upgraded to an X-lock.

Locking level
SQLBase places locks at the page level. If the record being accessed fills most of th
page, only that record is locked. Otherwise, a group that is composed of the reco
and its adjacent records, which together make up a page, is locked. A page can
contain any sort of data, including indexes and system catalog data (detailed
descriptions of the various SQLBase page types can be found in Chapter 8, Database
Pages).

Locking scope
The scope of the locks implicitly placed by SQLBase cover all the data structures
the optimizer determines are required to execute each command within a transa
When processing a SELECT statement, the optimizer will lock those index leaf p
that are required to build the result set, if an index is chosen as a component of
access path. Also, all data pages read during the processing of the SELECT stat
will have S-locks placed upon them. Often, contention between transactions occ
not on the data pages but within the index structures due to the potential prolifer
of X-locks within the index. When S-locks are released is a function of the
transaction’s isolation level, but is also affected when transactions use cursor co
preservation. On the other hand, X-locks are always held until either a commit o
rollback is issued, regardless of the transaction’s isolation level or the use of cur
context preservation.

Lock attempted to place

Existing lock on page S-lock U-lock X-lock

S-lock Allowed Allowed* Wait

U-lock Allowed* Wait Wait

X-lock Wait Wait Wait
Advanced Topics Guide 13-7

Chapter 13 Concurrency Control

CP)
s for

g its
 the
tact

ill

ed on
their
ions

 on,
e

 page

try
a
on
ing
ks
o
ill be
 be
eaf

on
Cursor context preservation
Normally, all of a transaction’s locks are released by a COMMIT command. If the
transaction has turned cursor context preservation on (commonly abbreviated C
for one or more cursors, through setting the SQLPPCX flag to one, then the rule
releasing locks change somewhat. Specifically, those cursors’ result sets and
associated S-locks are maintained across the COMMIT command, allowing the
transaction to perform update operations and commit those results without losin
current place in the result sets of open cursors. Also, for transactions running in
RL isolation level, and not performing DDL commands, result sets will be kept in
across the execution of a ROLLBACK command. This means that following the
COMMIT command for a transaction with CCP on for some cursors, locks will st
be held (as required by the transaction’s isolation mode) for those result sets
associated with SQL SELECT commands of those cursors.

The CCP flag allows programs to browse large result sets, perform updates bas
the result sets, commit or rollback those updates as desired, and then continue
browsing without having to reestablish the result set. This makes these transact
very effective in a multi-user environment, since the commit allows locks
(particularly X-locks) to be freed-up and which other transactions may be waiting
while the CCP feature allows the transaction to avoid the overhead of building th
same result set multiple times.

Index locking
In the case of an INSERT or DELETE, X-locks will be placed not only on the page
containing the row which is the subject of the command, but also on at least one
for every index that exists on the table. This same case holds true for UPDATE
commands specifying columns which are the subject of one or more indexes.

The index page that will definitely be X-locked is the page containing the leaf en
pointing to the subject record. This is the only page in the index which will have
permanent X-lock placed on it, this X-lock will not be released until the transacti
commits or ends. If index structure adjustments need to be made, such as splitt
index records, then additional X-locks will be taken as well. These additional loc
will be taken on those nodes within the index structure that have to be updated t
perform a split or the movement of a successor key up the tree. These X-locks w
released once SQLBase completes the operation on the index tree; they will not
held through the life of the transaction (in contrast to the X-lock on the affected l
page).

SQLBase performs the following steps when performing a DML INSERT operati
which must modify an index (both DELETE and UPDATE function similarly and
therefore are not explained):
13-8 Advanced Topics Guide

Lock types and scope

ach
rd.

If it
are
 split
 non-
ng.

 be
tely

ir U-

any

on

 the
e,

y the

nt
ost
dex
e

ash
g

lable

he

the
• As SQLBase traverses the index tree, it places a temporary U-lock on e
node it accesses. This starts with the root node and progresses downwa

• When a node within the tree is traversed, it is checked to see if it is full.
is not full, then all the temporary U-locks on nodes higher up in the tree
released, not including the current node. This is done because any index
that may be required could not effect any higher nodes than the current,
full node, since this node can accommodate another entry without splitti

• When SQLBase reaches the leaf node and it is not full, then no split will
required and all temporary U-locks on higher level nodes can be immedia
released. If the leaf is full, then a split is required and all higher level tree
nodes that need to be adjusted as a result of the operation will have the
locks upgraded to temporary X-locks. Of course, the leaf node itself will
always be the subject of a permanent X-lock.

• SQLBase performs the index updates, both to the leaf nodes as well as
nodes further up the tree that may be affected.

• The permanent X-lock on the leaf page is always held until the transacti
terminates with either a COMMIT or a ROLLBACK. All temporary X-locks
on higher level pages within the index structure can now be released.

The most important aspect is that some time during the performance of a DML
modification statement that affects an index, there will be a temporary U-lock on
root page of the index. Hopefully this lock will be in place for only a very short tim
depending on the condition of the index tree and the insertion pattern followed b
application. However, if some other transaction should come along and want to
perform an equivalent operation, they will have to wait in order to place their own
temporary U-lock on the root page as well. Therefore, any application environme
that is very update-transaction intensive should attempt to eliminate all but the m
critical indexes on those tables that are used by most or all transactions. Each in
placed on a table that is inserted, deleted, or modified at a rapid rate, will have th
effect of placing a single-threaded contention point into each transaction that
performs these operations.

Lock implementation
The mechanism used by SQLBase to implement locks is through an in-storage h
table. This storage construct is used because it is efficient in storing and retrievin
tables with a large number of entries. When a new lock is needed, a previously
allocated, but currently free lock entry may be re-used. If no lock entries are avai
for reuse, then additional lock entries may be dynamically added to the table in
groups of 100 locks at a time. These allocations can be added to the table until t
maximum number of locks specified in the LOCKS keyword of the SQL.INI file is
reached, or until the server has no more memory to allocate. Each lock entry in
Advanced Topics Guide 13-9

Chapter 13 Concurrency Control

wing

the

l

if

ting

cks
xist

f of a

 a
tion
 the
t of
n
el.

ny
m.
table represents either a single page or a range of pages, and contains the follo
data:

• The group number owning the page, or page range, that is locked. As
explained in Chapter 8, this number uniquely identifies one object within
database, such as a table or index.

• The logical page number of the page that is locked, or the starting logica
page number of a page range that is locked. Logical page numbers are
assigned sequentially within a group starting from one.

• The logical page number of the end of the range which is locked.

• The type of lock that is held, either S, U, or X. This is prefixed with a ‘T’
the lock is temporary, such as TS, TU, or TX.

• The transaction identifier of the owner of the lock.

Whenever SQLBase is performing a read or a write operation, the lock table is
checked for the group and page on which the operation is performed. If no conflic
lock type exists in the table, then a new lock is added on behalf of the current
transaction before the operation proceeds. In this way, SQLBase ensures that lo
are set prior to performing the operations they control, and that no lock conflicts e
that could undermine the integrity of the system.

Isolation levels
The protocols that are used by SQLBase to perform locking operations on behal
transaction are called isolation levels. These define how long locks will be held and
how SQLBase will pass data to the transaction via the message buffer. The four
available isolation levels are: Read Only (RO), Repeatable Read (RR), Cursor
Stability (CS), and Release Locks (RL). These are often referred to by their
abbreviations. The isolation level is selected by a transaction when it first opens
cursor to SQLBase, and remains in effect for the life of the transaction. The isola
level that is selected by the transaction applies to all cursors that will be used by
transaction. Changing isolation levels in the middle of a transaction has the effec
causing an implicit COMMIT and starting a new transaction with the new isolatio
level. All of the transaction’s cursors will now operate under this new isolation lev
Also, having cursor context preservation on will not preserve the result sets of a
cursors, nor their locks, when changing a transaction’s isolation level in midstrea
13-10 Advanced Topics Guide

Isolation levels

the
, their

void
t
his is

ion.

ly
ize

e

ons:

e
he
n
ns

nlike

sult
r to
l
e

ction
ishes
age

s
f the
ed by

ere

se
Using isolation levels effectively

Repeatable Read and Cursor Stability deadlock avoidance
While the Repeatable Read (RR) and Cursor Stability (CS) isolation levels offer
greatest levels of data consistency available to transactions that perform updates
low level of concurrency (especially RR) leads many application developers to a
them. These levels may be appropriate choices, however, for those systems tha
demand a high level of data consistency, due to the nature of their application. T
particularly true of the CS level when used in an intensive transaction processing
environment where few rows are created or updated by each transaction execut

The use of CS for these cases allows a guarantee of consistency without severe
impacting performance provided that some guidelines are used in order to minim
the occurrence of deadlock situations. One drawback in using the CS mode that
should be kept in mind is the increase in network traffic that may be caused by th
single-row buffering used by CS to respond to FETCH commands. The following
guidelines, when used with the CS isolation mode, will minimize deadlock situati

• All transactions should acquire their lockable resources (table rows) in th
same order. An example would be to read the CUSTOMER table, then t
ORDER table, then the ITEM table in that sequence. By conforming to a
ordered specification for reading and updating tables, different transactio
can avoid deadlocks that are caused by contending for locks between u
transactions.

• Transactions which perform updates of rows returned from a SELECT re
set should use the FOR UPDATE OF subclause of the SELECT in orde
place a U-lock at the time of the SELECT. When they perform the actua
UPDATE command, they then use the WHERE CURRENT OF subclaus
specifying the cursor that holds the result set of the SELECT. When
transactions follow this protocol, they can avoid deadlocks between like
transactions competing for locks on the same tables. A secondary transa
that accesses the same page as another will have to wait until the first fin
before it can place its own U-lock, since only one U-lock may exist on a p
at one time.

The use of these two guidelines can greatly reduce the possibility of transaction
terminating due to true deadlock situations. Depending on the processing time o
transactions, however, there may be time-outs due to waits for locks to be releas
their owners.

Release Locks isolation level
Locking strategies which are “pessimistic” prevent the situation from occurring wh
lost updates or uncommitted dependency problems could arise. For example, as
explained above, an S-lock is placed on a data base row (in actuality the data ba
Advanced Topics Guide 13-11

Chapter 13 Concurrency Control

llow
to
/page,

rrors.
elop

ually

 a

se

ilure of

e the

ed to

ted it,
e
n test

me
k if the
py).

his
vel
d
page) as soon as a transaction reads the data. At this point, SQLBase will not a
any other transaction to update the row so that lost updates are guaranteed not
occur. However, even though multiple transactions read the same data base row
only one transaction may actually choose to update the row. This transaction is
prevented from doing so because one of the other transactions might update the row.

SQLBase offers an advanced “optimistic” isolation level which most multi-user
applications will choose to decrease the number of SQL timeout and deadlock e
SQLBase offers the isolation level Release Locks, which allows conditions to dev
where lost updates and uncommitted dependency problems might occur but provides
the programmer with features to detect and avoid these problems when they act
occur. Each data base row in SQLBase is assigned a unique ROWID when the row is
initially inserted and this field is changed every time the row is updated and
committed. The programmer can track the value of ROWID and determine when
row has actually been deleted or updated by another user.

Warning: Using Release Locks (RL) isolation level with programs which perform databa
updating requires each program using the RL feature to conform to the same method of
detecting and handling cross transaction updates, such as the technique shown here. Fa
all programs to conform will likely result in lost updates and uncommitted dependency
problems that will proliferate throughout the database.

For example, with the Release Locks isolation level, the programmer would issu
following command to select a row from a customer table:

SELECT ROWID, COL1, COL2,...COLN FROM CUSTOMER
INTO:SavedRowID, :IntoVar1, :IntoVar2, ... :IntoVarN
WHERE CUST_NAME = 'SMITH AND SONS, INC.’

The following SQL update command would be used when the programmer need
update this row:

UPDATE CUSTOMER SET COL1 = '<value>' ...
WHERE ROWID = :SavedRowID

If another user had actually updated or deleted this row since this program selec
the ROWID would change such that the SQL update command would fail and th
data base server would return the -806 SQL error code. The programmer can the
for the -806 error and take appropriate action (such as advising the user that so
other user has either updated or deleted this customer since they read it, and as
user wants the program to re-read the customer record in order to get a fresh co

Read-Only isolation level
The Read-Only (RO) isolation level in SQLBase is a special isolation level that is
available for use only to transactions that perform no updates to the database. T
mean no INSERT, UPDATE, or DELETE DML statements are allowed. The RO le
achieves data consistency without setting any S-locks through a technique calle
13-12 Advanced Topics Guide

Isolation levels

ut

or a

f the

 as it

nd
st

 high
uting
BA
erver
ult

nd

ss the
her

e

ta
multiversion concurrency control. This allows any transaction running in RO to read
all of its data as it existed at the time of the SELECT statement execution, witho
having S-locks placed on the result set of the SELECT.

The way SQLBase handles this is by maintaining a history file of database page
images. This history file contains the “before-update” image of database pages f
certain timeframe. Each of these images is a version of the database page at some
prior point in time. When an RO transaction retrieves a page from the database,
SQLBase compares the timestamp of the last page update with the timestamp o
SELECT statement being processed. If the database page has the more recent
timestamp, then SQLBase goes to the history file to retrieve a version of the page
existed prior to the update, and passes the rows from this page back to the
transaction’s program.

The Read-Only isolation level offers the highest possible levels of concurrency a
data consistency for read only transactions, but there is a significant overhead co
associated with the ongoing work required to maintain the history file and the
multiple versions of database pages contained therein. This overhead can be as
as 30% for databases supporting OLTP type applications, with many users exec
rapid transactions. The availability of the RO isolation level is controlled by the D
through settings in each database’s control page, as well as globally through a s
flag. These settings are probably best turned off (RO disabled, which is the defa
setting) unless a significant need for this high level of data consistency exists, in
which case they may be turned on only for those periods of time when RO
transactions are known to be running.

Selecting isolation levels
Selecting isolation levels is an activity that should be performed by a person
knowledgable of the overall application characteristics. The selection of an
appropriate isolation level requires knowledge of the overall application design a
usage patterns that may be beyond the scope of every project team member’s
knowledge. Furthermore, the use of isolation levels should be standardized acro
entire application since the choice of one transaction’s program can affect the ot
transactions with which it will be interleaved.

Comparing isolation levels
When designing multi-user database applications, two conflicting factors must b
considered before choosing an isolation level:

• Data Consistency. Data should be consistent when accessed by multiple
users.

• User Concurrency. Multiple users should be able to access the same da
concurrently.
Advanced Topics Guide 13-13

Chapter 13 Concurrency Control

cy. For

nd
 a
utes)
 page.

B is

tinue.

ncy
of the
locks

is

lient
).
 at

sers
t use
ack.

f so,

t? If
ther
e
The highest degree of data consistency occurs at the expense of user concurren
example, one locking protocol may ensure that lost updates or uncommitted
dependency problems will not occur. However, this may result in many timeout a
deadlock errors. A SQL timeout error occurs when a given SQL command waits
program-defined number of seconds (the default is 360 seconds, which is 6 min
for a lock to be released by another program so that it may access the data base
A deadlock occurs when user A is waiting for row 1 which user B has, and user
waiting for row 2 which user A has. In this situation, SQLBase will sense this
deadlock and abort one of the requests thereby allowing one of the users to con

Figure 13C - An ordered approximation of isolation levels along the data consiste
vs. user concurrency continuum. Note that Read Only (RO) occupies both ends
spectrum only because it disallows any update operations and thereby avoids X-
completely.

Criteria for choosing an isolation level
As we have seen, SQLBase provides several isolation levels. The choice of an
isolation level is determined by evaluating the following criteria:

• Buffers: How critical is performance for this application? If performance
critical, and meeting performance expectations is going to be difficult,
choose an isolation level that sends one buffer of rows at a time to the c
(meaning it fills the entire input message buffer before sending any data
Avoid using the Cursor Stability (CS) isolation level, which sends one row
a time.

• Contention: Will there be a great deal of user contention, where many u
will be attempting to access the same data simultaneously? If so, do no
an isolation level that places S-locks on all read data until a commit/rollb

• Update: Will the users be performing inserts, updates, and/or deletes? I
the isolation level must allow these actions.

• Consistency: Is a consistent view of data across the application importan
transactions must know about updates the moment they are made by o
transactions, or must guarantee that data they have read will maintain th

RO R LRR C S R O

Da ta Cons is tency U se r Concu rrency
13-14 Advanced Topics Guide

Isolation levels

holds

us

dge
 set

as no

the
S

,
vels

sed.

c

same values until the transaction ends, then select an isolation level that
read locks until commit or end.

The following table may be used to help determine which isolation level is
appropriate for a specific database application based on responses to the previo
criteria description.

Common isolation level scenarios
Finally, there are some common rules-of-thumb that can be followed in the great
majority of cases when selecting an isolation level for a transaction. While these
represent common practice by SQLBase users, they do not substitute for knowle
of the lock process and how the various isolation levels work. These are simply a
of heuristic rules that can speed up the decision process when the transaction h
unusual characteristics that may warrant deviation from normal practice.

• For transactions which are executed in a multi-user manner throughout
day and may perform a moderate amount of update activity, the RL or C
isolation levels are the best choice. These levels provide the greatest
concurrency when used in conjunction with good programming practices
such as committing frequently. The choice between these two isolation le
is often made on the following basis:

• When the application will always be used solely with SQLBase, as
opposed to another RDBMS, then the RL isolation level should be u

Isolatio
nLevel

Locks Data Consistency
Criteria

 1
Buffers

Criteria
2

Contentio
n

Criteria
 3

Update

Criteria 4
Consisten

y

RR Locks maintained for
duration of transaction,
more than one page
may be locked.

High data consistency,
low user concurrency.

YES NO YES YES

CS S-locks held only for
rows on current page.

Medium data
consistency, medium
user concurrency.

NO YES YES NO

RO No locks, no inserts,
updates, or deletes
allowed.

High data consistency,
highest user
concurrency.

YES YES NO YES

RL No held S-locks, S-
locks released at end-
of-fetch, X-locks held
until commit/rollback.

Low data consistency,
high user concurrency.

YES YES YES NO
Advanced Topics Guide 13-15

Chapter 13 Concurrency Control

h an

 CS
 be
n

.

m
tem.

sed.
ns
le,

in

d

nt
the
e
rn of
d be
e

ing
ng
ack
he

les

be

am’s

or
al
• If there is a possibility that the application may be ported to another
RDBMS, then the CS isolation level should be used.

These choices are based on the fact that few RDBMSs provide suc
optimistic locking protocol as RL (which makes the assumption that
many rows read by a transaction will not need to be updated), but the
isolation level is a standard feature in most RDBMSs and will usually
available. The CS protocol is the most commonly used for transactio
processing systems utilizing IBM’s DB2 mainframe RDBMS system

Examples of transactions falling into this category are order entry, confir
shipment, and receive inventory transactions in an order processing sys

• For update transactions that require their entire view of the data to be
consistent throughout their execution, the RR isolation level should be u
Because of the high number of locks that may be held, these transactio
should be scheduled to execute at times when the system is relatively id
otherwise a large number of time-outs and deadlocks may result. These
transactions may also include rather elaborate commit and restart logic
order to free up as many locks as possible that are not needed.

Examples of these types of transactions, (again in an order processing
application), would be processing physical inventory count, purging age
orders, or applying updated product prices.

• Transactions which meet the preceding definition of requiring a consiste
view of their data throughout their definition, may also be candidates for
use of the RO isolation level, provided they do not perform any databas
modifications whatsoever. Since the RO mode sets no locks, the conce
causing time-outs and deadlocks is eliminated, and the transaction coul
scheduled at any time regardless of system workload considerations. Th
downside, however, is that SQLBase must perform the work of maintain
history files for the storage of the prior versions of database rows, causi
both processing overhead and more disk utilization. Of course, this drawb
is not as significant if update transactions run rarely, or not at all, since t
need to build rows in the history file would occur infrequently.

An example of a transaction in this category would be a year-to-date sa
report for an order processing system.

Transactions which do not easily fit into any of the preceding categories should
evaluated carefully as unique cases. Consideration should be given to the
transaction’s usage frequency, including transaction volume and times, the progr
commit and restart logic, and the characteristics of the workload that will be
executing concurrently. This analysis should yield an appropriate isolation level f
any transaction. If problems are encountered when the transaction begins norm
operations, the isolation level may need to be reconsidered.
13-16 Advanced Topics Guide

Isolation levels

e
ake
g

on
Remember, when going from a restrictive isolation mode to a more relaxed mod
(such as from RR to RL), there may be programming modifications required to m
the transaction behave properly in the new isolation level. An example is checkin
ROWIDs for concurrent updates by transactions that are executing in RL mode.
Application designers should be cautious when migrating to more relaxed isolati
levels to ensure that data consistency is not sacrificed to the point where the
application can no longer be considered reliable by its users.
Advanced Topics Guide 13-17

le to.

of

rder

Advanced Topics Guide
Chapter 14

Logging and Recovery

In this chapter we:

• Review the various types of failures that the SQLBase server is susceptib

• Examine the way SQLBase uses the log files to minimize the possibility
database damage occurring during a failure.

• Evaluate the backup and recovery techniques that you can implement in o
for the SQLBase safeguards to function effectively.
Advanced Topics Guide 14-1

Chapter 14 Logging and Recovery

order

that
fined

sed by
nt
ns,

s

e of

stem
ely,
y

of
e
 RM

k for

n
se

o, a
ns at
Introduction
There are many kinds of failures to which computer systems are susceptible. In
to protect the database against the effects of these failures, SQLBase contains a
Recovery Manager (RM) software component which is responsible for ensuring
the database is always in a consistent and valid state. This consistent state is de
simply as having all of the effects of committed transactions applied and none of the
effects of uncommitted transactions applied. The RM achieves its goals primarily
through the use of a log file. This file contains the physical images, or history, of
database changes made by transactions over time. For this reason, the log file u
SQLBase is a physical log file, hereafter called the log file. Since the RM compone
of the database server provides the recovery method for all database transactio
regardless of their program characteristics, SQLBase is said to contain centralized
recovery.

This chapter will first discuss the broad types of failures which SQLBase protect
against, then the mechanisms used to provide this protection.

Failure types
There are many possible failures that a computer system is susceptible to. Som
these failures are caused by faulty programs that place erroneous data into the
database (but which commit nonetheless), or the entry of flawed data into the sy
by application users who are unaware of the damage they are doing. Unfortunat
these are examples of errors which cannot be recovered automatically, since an
DBMS must trust that the execution of program requests which are semantically
correct will place correct results in the database. As will be seen, though, some
these types of errors can be recovered from by using the same techniques as ar
applicable for media failures. The three basic types of system failures which the
provides centralized recovery from are transaction failures, system failures, and
media failures.

Transaction failures
Transaction failures are aborts of transactions that result in a performing rollbac
the transaction. The transaction may abort at its own request (by issuing the
ROLLBACK command), or due to some other cause, such as a client workstatio
failure or a network failure. Transaction aborts may also be issued by the SQLBa
server in some situations, such as to break a deadlock situation between two
transactions, one of which must be aborted in order for the other to proceed. Als
transaction failure may affect one transaction only, or some number of transactio
once.
14-2 Advanced Topics Guide

Failure types

 by

erm

w for
such
are),
g
r task
d
 no
ver
the

e
ry
s the
 that
m

ates
 the

 restart
 the

(disk
e

g
 fail
n to
e
e to

ated
 SQLBase provides transaction integrity, which prevents these types of failures from
corrupting the database. The mechanism used to accomplish this is by undo
processing from the log file. Following the undo, all database updates performed
the transaction are no longer present.

System failures
System failures cause loss of the server’s volatile storage (RAM memory). The t
“system” as applied to this type of failure refers to the program processing
environment that is created by the operating system (OS/2 or other SQLBase-
supported environment) and consists of the resources and control blocks that allo
task ownership and dispatching functions. These failures may be due to causes
as an abnormal end (abend) in the operating system environment (such as NetW
an operator inadvertently cancelling the server program, or power failures, amon
others. The net effect of these types of failures is that either the SQLBase serve
suddenly disappears, or it discovers that it can no longer continue processing an
must request an abend. When the SQLBase server is shutdown normally (when
users are connected to the database), or a database is de-installed from the ser
through the DEINSTALL command, the Database Control Block (DCB) page for
database is flagged to indicate a normal shutdown took place. This is called a
“graceful shutdown”.

SQLBase provides for system integrity through the implementation of a restart featur
which prevents these failures from affecting the database. Restart is invoked eve
time a database is first connected to after the server is started, where it examine
DCB page of the database to determine what led to the prior shutdown. If it finds
the flag in the DCB indicates no recovery is required, then it knows that the syste
had been terminated gracefully on its last execution. In this case, restart can be
bypassed and the connection established immediately. If the flag in the DCB indic
that recovery is required, then restart must perform its processing prior to allowing
connection to the database to be established. Because of the dependency of the
logic on the contents of checkpoint records, this process is explained in detail in
checkpoint section later in this chapter.

Media failures
Media failures cause the loss of some portion of the server’s non-volatile storage
drive). These failures may be caused by environmental effects on the disk storag
environment or through defects in the storage device. Also, magnetic media are
inherently subject to a limited life because eventually the bonding material holdin
the oxide on the platter (in the case of a disk) or the film (in the case of tape) will
and the oxide will begin to wear away. When this happens, minor errors will begi
occur. If these errors are observed, the data may still be sufficiently readable to b
copied successfully to another device. Otherwise, the oxide will eventually degrad
the point that the device will become unusable. This generally occurs to one isol
Advanced Topics Guide 14-3

Chapter 14 Logging and Recovery

astic

y be
ical

which
iodic

e,
d to

ssed

r

ce
e

,
ng.
es.

ory,

 that
the
e to
 a
e and

storage device at a time. Multiple disk drives rarely fail together, unless some dr
environmental problem occurs, such as a power surge or shock damage. These
potential disasters are the justification for developing and maintaining a disaster
recovery plan, which involves backing critical data up onto tape or disks that ma
stored off-site from the computer hardware (which is highly recommended for crit
computer installations, but is beyond the scope of this chapter).

Sites can establish procedures using SQLBase’s backup and recovery features
allow the impact of media failures on the database to be minimized. Through per
backup of the database and log files the capability is provided to restore to any
particular point in time that is desired. In order to recover to a specific point in tim
the required backup is simply restored. Any log images that need to be processe
that restored database in order to reach the desired point in time are then proce
through a SQLTalk command called ROLLFORWARD. The most important
characteristic of this process is that the application of redo log images in the
rollforward is an “all or nothing” choice. There is no option to bypass either some
transactions on a log file, or some log files, or skip over a particular time gap. Fo
whatever point in time is chosen to recover to, all log images prior to that point in
time must be applied. SQLBase will not allow you to attempt to do otherwise, sin
this would probably cause severe database corruption which would most likely b
irreparable.

Recovery mechanisms
The SQLBase recovery manager relies primarily on two mechanisms for
accomplishing its centralized recovery objectives. The first of these is the log file
which provides the information required for undo, redo, and checkpoint processi
The other is the set of utilities which provide for backup and recovery of databas

The log file
As mentioned in the introduction, the log file contains the physical images, or hist
of database changes made by transactions over time, and is therefore called a physical
log file. Another important characteristic of the log file is that it exists on stable
storage, as opposed to being stored in volatile storage. Stable storage is an area
retains memory across system failures, typically a disk drive. Volatile storage is
RAM memory used by the running system, which is subject to loss of content du
a variety of types of failures. Since the log resides on stable storage, it becomes
dependable repository of historical information about the contents of the databas
the way these have been altered over time by the execution of transactions. This
14-4 Advanced Topics Guide

Recovery mechanisms

ay

file.
isk
 can

t in
all

e log

that

eparate

s
t

rt of
is
r
ies

ame
 of
information is the key to the Recovery Manager’s ability to perform automatic
recovery from a variety of failure types.

Figure 14A - There are two basic types of logs, active and archive. Archive logs m
be moved to tape or other media through use of the BACKUP LOGS SQLTalk
command when LOGBACKUP is on.

The log files used by SQLBase can be divided into two subtypes, the active and
archive logs. Together, these two log types make up the complete database log
The active log is the log that is currently being written to by the server; this is a d
file whose status is “open”. For this reason, the active log is pinned to the disk and
only be processed by the server. Only one active log can exist at any single poin
time. Whenever the server is shutdown gracefully, or a database is de-installed,
“after images” on the log that have not yet been externalized to the database are
written (they are contained in dirty cache buffers), and the active log becomes an
archive log. When the server restarts, or the database is re-installed, a new activ
file is allocated.

There are usually many archive logs, however. These are simply old active logs
have filled up and are no longer needed by the server. When LOGBACKUP is
enabled, these logs should be backed up to some stable storage media that is s
from where active log and database files are stored in order to safeguard their
integrity. Of course, prior to this backup, some of the archive logs will still exist a
files in the same directory or DBAREA as the active log, while waiting for the nex
log backup.

Note that log file names are formed by using a sequential number for the first pa
the name, allowing for log files from 1 to 99,999,999 to exist. Since this number
reset to 1 whenever the database is reorganized, there is little likelihood of it eve
rolling over. Appended to this number is an extension type of LOG, which identif
the file as a log file.

Log files are stored in a subdirectory of the LOGDIR directory that is named the s
as the database which owns the log file. This convention allows for identification

64/%DVH

6HUYHU

/2*',5

%$&.83�/2*6

���/2*
���/2*
���/2*
���/2*

���/2*
���/2*
���/2*

$FWLYH�/RJ

$UFKLYH�/RJV

%DFNHG�XS�

$UFKLYH�/RJV
Advanced Topics Guide 14-5

Chapter 14 Logging and Recovery

only
 will
se

ard
iple

 the
inned

xt to

Note
ned.
the owning database only so long as the log file is in a subdirectory that applies
to that database. Merging the log files of multiple databases into one subdirectory
eliminate the ability to ascertain which log files belong to which databases. If the
log files are subsequently needed to ROLLFORWARD, neither the DBA nor
SQLBase will be able to ascertain which log files to make available to the rollforw
process. For this reason, DBAs should take care not to allow the log files of mult
database to become merged in a single directory.

Pinned log files
Some archive logs may also be pinned to the disk if they may still be needed by
server for transaction recovery or restart purposes. The reasons a log may be p
to disk are:

• The log is active, which means the server is currently writing to it, as
explained previously.

• If there are records on it from uncommitted transactions, then it may be
needed for later recovery. Should one of these transactions issue a
ROLLBACK, then the before row images stored on this log would be
required for the undo operation.

• If it contains a system checkpoint that is either the most recent or the ne
most recent checkpoint, then it may be needed for later restart.

• The log has not yet been backed up, and LOGBACKUP is in effect.

Figure 14B - The active log, 37.log in this case, is always pinned. The prior log,
36.log, is pinned because it contains log images for active task 49. The 35.log is
pinned because it contains a checkpoint record that could be needed for restart.
that 36.log would be pinned even without transaction 49, due to 35.log being pin

���ORJ ���ORJ ���ORJ ���ORJ

7UDQ���

7UDQ���

7UDQ���

6
7
5
7

6
7
5
7

6
7
5
7

&
.
3
7

&
.
3
7

&
.
3
7

7UDQ���

6
7
5
7

�SLQQHG��XQSLQQHG� �SLQQHG� �SLQQHG��SLQQHG�

$FWLYH�/RJ

&
2
0
7

&
2
0
7

&
2
0
7

14-6 Advanced Topics Guide

Recovery mechanisms

ose
d

rrent

d.
uch

ugh
I

tdown

iles.
rms a
, and

ever
ns of

rmed

DCL
y

nd

oint

ntrol
SQLBase periodically reevaluates the status of all pinned log files and deletes th
that no longer meet one of these criteria. Log file status evaluations are performe
whenever one of the following events occurs:

• At log rollover, usually when the current active log fills up and a new log
must be created. This action can also be forced to occur even when the cu
log is not full through execution of the SQLTalk RELEASE LOG comman
Note that some SQLBase commands issue a RELEASE LOG implicitly, s
as the BACKUP SNAPSHOT command.

• When log files are backed up through the SQLTalk BACKUP LOG
command, or the equivalent API call.

• When the system’s “next log to backup” parameter is reset manually thro
the use of the SQLTalk SET NEXTLOG command, or the equivalent AP
call.

• When logging for the database stops because either the server was shu
or the SQLTalk SET RECOVERY OFF command is executed.

These are the only events that cause SQLBase to consider deleting pinned log f
Performing an evaluation of the logs’ pinned status whenever a transaction perfo
commit or rollback would cause excessive overhead and slow down transactions
is therefore not done by SQLBase.

Record types
The SQLBase logging manager is an integral part of the SQLBase DBMS. When
a database program executes, it creates before and after images for those portio
database rows that are modified in some manner. These modifications are perfo
through execution of the INSERT, DELETE, or UPDATE DML commands. Other
commands which update the system tables in the database, including DDL and
commands, also cause the before and after row images of the catalog tables the
update to be logged. Also written to the log at the appropriate times are control
records indicating when the program connected to the database (start record), a
when it issued a COMMIT or ROLLBACK command (commit and abort records).
These log records allow SQLBase to maintain transaction integrity and perform p
in time recovery operations. In addition, SQLBase writes a number of system co
Advanced Topics Guide 14-7

Chapter 14 Logging and Recovery

eral

og

ase,
records to the log file that allow it to maintain the integrity of the page allocation
mechanism and enhance the ability to perform system restarts.

Figure 14C - The composition of the log file. Each log file contains many variable
length records such as LR1 through LR5, above. Each record may be one of sev
types. An expansion of the image fragments for the data page log record type is
shown.

As shown in figure 14C, each log file physically contains many variable length
records. Each record consists of a header, a variable portion, and a trailer. The l
record header is 34 bytes in length, and contains the following fields:

• Type: the format type of the log record, such as those explained below.

• Length: the total length of the log record.

• Timestamp: the point in time that the log record was written.

• Transaction: the ID of the transaction which caused the log record to be
written.

• Chaining information: a pointer connection two related log records.

Each of log record is of one particular type, such as:

• Start transaction

This log record is written whenever a program first connects to the datab
thereby starting a transaction. There is no variable portion to the start
transaction log record type.

/RJ�5HFRUG�� /5� /5� /5� /5�

+HDGHU 7UDLOHU%HIRUH�)UDJPHQW $IWHU�)UDJPHQW

+HDGHU 7UDLOHU'DWD

�
E\WHV

�
E\WHV9DULDEOH

64/%DVH�/RJ�)LOH

9DULDEOH
�

E\WHV
��

E\WHV
14-8 Advanced Topics Guide

Recovery mechanisms

nd.

ble

ten.
ed.

 of

re

age.
he

s a
ich
de to
ons,
 time
d is
tion
ject
• Commit transaction

This log record is written whenever a program issues a COMMIT comma
There is no variable portion to the commit transaction log record type.

• Abort transaction

This log record is written whenever a program issues a ROLLBACK
command, following completion of the undo operation. There is no varia
portion to the abort transaction log record type.

• Data page modification

Any change made to a table’s data rows will cause this record to be writ
Note that only those columns that actually change in the row will be logg
These changes are made through the execution of the DML commands
INSERT, UPDATE, and DELETE (an exception to this case is system
catalog tables, which have changes made to them through the execution
DDL commands). The variable portion of this record type has two major
components:

• Before fragment

The before fragment is written whenever a previously existing row is
modified through execution of the UPDATE or DELETE DML
commands. The fragment has a 5 byte header, followed by the befo
images of the changed row columns, and ends with a 2 byte trailer.

• After fragment

The after fragment is written whenever a DML command such as
INSERT or UPDATE causes changed data to remain on a database p
This fragment has a 5 byte header, followed by the after images of t
changed row columns, and ends with a 2 byte trailer.

• Index page modification

Whenever a program issues a DML command that INSERTs or DELETE
row a table that has an index associated with it, or UPDATEs columns wh
are the subjects of an index, then some change will be required to be ma
the index structure. These changes are logged as index page modificati
with a format similar to the database page change log record type. Each
a node of the index tree is modified, an index page modification log recor
written which contains the before and after fragments of the changed por
of the index node. Note that CLUSTERED HASHED indexes are not sub
to this logging activity, since they have no index tree structure.
Advanced Topics Guide 14-9

Chapter 14 Logging and Recovery

age

ther
ed to
es of

e
he
hen

do.
ed

base
t
 each
tart

he
tions
 finally
s
 of the

ase

read,
• Checkpoint

A checkpoint log record is written during each system checkpoint. The
variable portion of the record contains a 22 byte entry for each active
transaction connected to the database at the time the checkpoint was
processed.

• Page allocation

This log record type is written whenever pages are allocated from the
database. There are usually three of these log records written for each p
allocation action, the largest of which contains the after image of the
allocated page’s header and footer, which is about 60 bytes long. The o
two log records record the changes made to other pages which are chain
the newly allocated page, each of these log records contains about 8 byt
variable information.

• Long VARCHAR object

These log records are written whenever a column whose type is LONG
VARCHAR is inserted, modified, or deleted. The log record contains on
page that has been allocated to store the LONG VARCHAR column in t
variable portion of the log record. If the column is longer than one page, t
multiple log records will be written, each containing one of the pages
allocated for that column.

Undo and redo logic
The system functions that read the log and apply images from it are undo and re
The undo process (also called rollback) is used when before images are to be restor
to the database, while the redo (also called rollforward) performs the restoration of
after images to the database.

The mechanism used to accomplish the restoration of before images to the data
for failed transactions is by undo processing from the log file. This process starts a
the end of the active log and reads backward from that point. As the log is read,
before image of an update is restored to the database. This continues until the s
control record of the transaction is reached, at which time the abort termination
record can be written at the end of the log file, and the transaction terminated. T
transaction’s locks are held until transaction termination to prevent other transac
from accessing the rows that are being restored to the database; these locks are
released when the abort record is written to the log. The strict serialization that i
forced upon transactions through the use of database locks assures the integrity
undo process.

The mechanism used to accomplish the restoration of after images to the datab
when the updates of committed transactions must be reapplied is through redo
processing. This process involves reading forward through the log. As the log is
14-10 Advanced Topics Guide

Recovery mechanisms

re that it
se. If
hich

they

 they
 the
 buffer
te the
s that

spose

ot yet
 this
e

le

efore
e
e by
ng
n

ust
the
in
he
ce
each after image of a database change is checked against the database to ensu
was successfully written, and if not, then the redo process writes it to the databa
the end of the log is encountered, any active transactions that remain (those for w
no termination record has been found) are the subject of undo processing, as if
had been the subjects of a transaction failure.

One important characteristic of the undo and redo processes in SQLBase is that
must be capable of recovering the database to its committed state regardless of
status of updated pages in cache. Cache is the volatile system memory used as a
area for database pages. A large quantity of cache memory can greatly accelera
performance of SQLBase by decreasing the number of read and write operation
must wait for external disk accesses to complete. The maintenance of the cache
buffers is the responsibility of the Cache Manager (CM), which performs fetch
operations to return the contents of cache to SQLBase, and flush operations to di
of the contents of cache pages. In SQLBase, system efficiency is enhanced by
allowing the CM to make the majority of decisions regarding the timing of cache
operations, such as when to flush pages and when to write “dirty” pages to disk
(“dirty” cache pages are those pages which have been updated in the buffer but n
written to disk). In order for the undo and redo processes to work successfully in
environment, SQLBase must follow two rules regarding the interplay between th
CM and external storage:

• Undo rule (also called the write ahead log protocol). This rule states that
before an uncommitted value may be written to the external database
(DASD), its prior value must be saved in stable storage (the log). This ru
ensures that no previously committed row can be overwritten by an
uncommitted row without its contents being saved in stable storage for
possible undo processing. This means that the log record containing a b
image of an updated row must be written prior to the CM’s flushing of th
dirty cache buffer containing the updated page. The CM enforces this rul
placing the log record pointer within the dirty cache buffer, and not allowi
flushes of cache buffers whose associated log records have not yet bee
written.

• Redo rule. When processing a transaction’s commit, all write operations m
be completed to stable storage. This can consist of either the log file or
external database. This rule ensures that committed values are present
some form of stable storage, and not just within the contents of dirty cac
buffers. SQLBase flushes log buffers at commit time to ensure complian
with this rule.
Advanced Topics Guide 14-11

Chapter 14 Logging and Recovery

eed
 file
ld

e
een
rall

n
estart
s
at the
 for
ction

stent
time
nd
nt

ppens
ieve
cess
to

e
ith
n

t of
 for a
 are
two
start.

be
Checkpointing and restart
One problem faced during system restart is how to determine what log records n
to be processed out of the voluminous contents of the total log file. The entire log
cannot be scanned and processed due to the enormous amount of time this wou
take. Simply examining the current log file also is inadequate, since this may tak
quite a while if the file is large, and some uncommitted transactions may have b
active on prior log files. Because fast restarts are an important component of ove
system availability time, SQLBase employs a strategy called fuzzy checkpointing in
order to speed this process up.

In general, the activity of checkpointing is the writing of certain control informatio
to the log on a periodic basis during normal processing in order to speed up the r
process. This information is summarized from the DBMS’s internal control block
and consists of lists of transactions and the states that they are currently in, so th
restart process can rapidly ascertain what processes need to be performed, and
which transactions. These lists, organized around the possible states of a transa
(such as active, committed, or aborted), are organized chronologically and also
contain markers indicating when previous system checkpoints were taken.

When a checkpoint is actually being created, the DBMS must reach some consi
state in order for the externalized control blocks to be stable as well. During the
required to reach this consistent state, the DBMS must block the work (or suspe
processing) of all active transactions, otherwise the point of time of the consiste
state would always be “after this next operation” and would never actually be
reached. The amount of time that transactions are blocked while this process ha
depends on the amount of consistency that the checkpoint activity needs to ach
prior to writing a checkpoint record. Whatever inconsistencies the checkpoint pro
allows to remain must be resolved by the restart module whenever it is required
run. This is a classic trade-off situation, with higher levels of consistency taking
longer to achieve at checkpoint time but yielding greater benefits in terms of
simplified restart processing. Of course, since the DBMS spends much more tim
performing routine processing than restarting (hopefully!), getting carried away w
too much consistency during checkpointing has the penalty of causing transactio
delays during the creation of each checkpoint record for no subsequent benefit
whatsoever.

The fuzzy checkpointing scheme used by SQLBase requires a minimum amoun
system consistency to be achieved, and therefore only blocks active transactions
very brief interval when writing the checkpoint record. The benefits during restart
still substantial, though, since most of the time only the log file records between
checkpoints and the end of the log must be traversed in order to complete the re
These two checkpoints are the last and the second to the last (or penultimate)
checkpoint in the log. The log files containing these two checkpoints will always
14-12 Advanced Topics Guide

Recovery mechanisms

ing.

e
 will
use
 (LRU)
g at
ely,
y be
ust
till
e
 use

int

s are

alled

r.

oint

of

ctive
 end

n the
tions.

 terms
of
pinned to disk to ensure their availability. The following tasks are performed by
SQLBase when creating a checkpoint:

• Write to the log a list of transactions which are currently active, or process

• Flush all dirty cache buffers which have not been written since before th
prior checkpoint. If the server has been busy, many of these cache buffers
have been written during the time interval since the last checkpoint beca
the server needs to re-use cache pages based on the least recently used
algorithm. If this is the case, then few cache pages should require flushin
this checkpoint, allowing the checkpoint to be processed faster. Alternativ
if the server has been largely inactive since the last checkpoint, there ma
numerous pages containing data updated prior to that checkpoint that m
now be written to disk. If this is the case, however, the server will likely s
be relatively inactive and therefore the work associated with writing thes
buffers should not have an significant impact on current transactions. The
of this fuzzy checkpointing feature allows SQLBase to perform checkpo
processing with a low likelihood of negatively affecting performance.

When SQLBase starts, and discovers that a restart is required, the following step
performed:

1. The next to the latest checkpoint record in the active log is located. This is c
the penultimate checkpoint record.

2. Redo processes all transactions following the penultimate checkpoint marke

3. During the redo processing, the last checkpoint record in the log will be
encountered. This checkpoint contains a list of all active transactions at that p
in time. Redo uses this to track all transactions from this point on in the log.

4. When a transaction ends during redo processing, it is removed from the list
active transactions.

5. Eventually, redo will encounter the end of the log file.

6. Undo now reads the log backwards from the end to process all entries in the a
transaction list. Since these transactions had not been committed prior to the
of the log, they must be rolled back.

7. When undo encounters the start control record of the last transaction entry i
active list, recover is complete and the database is available for new connec

This process ensures that the database is returned to a consistent state, both in
of containing data only from committed transactions and not losing the contents
any write-delayed cache buffers.
Advanced Topics Guide 14-13

Chapter 14 Logging and Recovery

ich

int

 that

s. By
and

r prior

isk)

ackup

d

nd

up

s
 the
ays

e

used
ble
Backup and recovery
SQLBase’s backup and recovery features allow sites to establish procedures wh
minimize the impact of media failures on the database. This is made possible by
“point in time” recovery, which allows the database to be restored to any prior po
in time, thereby eliminating any updates or failure events that occurred between
selected point in time and the present. This also allows recovery from database
corruption caused by program logic errors, bad data, or faulty recovery processe
periodically backing up the database and log files and saving them, the backup
recovery capability is provided to restore to any particular point in time that is
desired, so long as two conditions are met:

• There must be an existing database backup that was created either at, o
to, the point in time where the database will be restored to.

• There must be a continual series of log files (either backed up or still on d
from the database backup point in time up until the point in time being
recovered to.

The tools necessary to perform these tasks are provided with SQLBase. Other b
programs and devices may be substituted if higher capacity or quicker backup is
desired through the use of products such as high capacity tape devices.

Since the recovery process requires identification and coordination of the require
backup and log files, sites should implement some form of labeling and tracking
procedures for whatever media they decide to store these files on. The recovery
process depends on reliable and rapid identification of these files in order to be
completed in a minimum amount of time. Also, the frequency of these backups a
log off-loads plays a key part in the site’s recovery procedures.

Considerations for partitioned databases
There are special considerations that must be allowed for when performing back
and recovery operations on partitioned databases. This is because the extent
allocation information for a partitioned database resides in the SQLBase server’
MAIN database. Without the MAIN database, the server will be unable to access
information in the partitioned database. Therefore, the MAIN database must alw
be kept in synchronization with the partitioned database it controls. Whenever
activity against a partitioned database is controlled by SQLBase, this level of
synchronization is guaranteed. Only when using utilities external to the SQLBas
software must the DBA be concerned about ensuring that the state of the MAIN
database and the site’s partitioned database reflect the same point in time.

Since partitioning is usually performed only for large databases, off-line backup
techniques are often appropriate. The SQLBase on-line backup utilities may be
with a partitioned database, but either adequate disk space will have to be availa
14-14 Advanced Topics Guide

Recovery mechanisms

re

own,
rior to

d to

e

 the

LTalk

ct the

nd

s a

l
for creation of the backup image file or the operating system has to provide a
technique to redirect the output directly to a tape device.

When using off-line backup techniques to backup partitioned databases, extra ca
must be taken to insure that the MAIN database remains synchronized with the
partitioned database. This means that during backup, the server must be shut d
and the partitioned database and the MAIN database must both be backed up p
restarting the server. When performing a restore made through this scenario, the
server must be shut down, and both the partitioned and MAIN databases restore
the matching set of backups. Failure to maintain this parallelism between off-line
backup and restore techniques will cause SQLBase to be unable to determine th
proper location of the database suballocations within the DBAREAs assigned to
partitioned database, which will result in unrecoverable database corruption.

When database backup and recovery procedures are implemented using the SQ
BACKUP, RESTORE, and ROLLFORWARD commands, SQLBase modifies the
contents of the MAIN database as necessary to ensure that they accurately refle
current state of the suballocations within the partitioned database’s DBAREAs.
Therefore, the DBA can be unconcerned about explicitly managing the backup a
recovery of the MAIN database in this situation. Of course, backing up the MAIN
database might still be considered as a part of a disaster recovery plan that allow
site to restore server operations on another machine that does not have an initia
installation of SQLBase software.
Advanced Topics Guide 14-15

ts to
ge

al

Advanced Topics Guide
Chapter 15

Introduction to Query
Optimization

In this chapter we:

• Follow the evolution of data access languages from their procedural roo
their modern declarative implementation represented by the SQL langua
used by SQLBase.

• Examine the various categories of query optimizers that exist in relation
database management systems.
Advanced Topics Guide 15-1

Chapter 15 Introduction to Query Optimization

a

ta
o code
tify

ndex
d.

tures
ring

over
 the
ent

nt
s
e cost

tly,
 on

s to
Data access languages
Before we can address query optimization, it is necessary to review data access
languages. You use a data access language to store data into and retrieve data from
database in a database system. Two fundamental different types of data access
languages exist today: procedural (or navigational) and declarative.

Procedural data access languages
Before the introduction of SQL database systems, most database systems (for
example, IDMS, IMS and dBase) were based on procedural, or navigational, da
access languages. Procedural data access languages require the programmer t
the programming logic necessary to navigate the physical data structures to iden
and access the required data. For example, with IDMS, programmers must write
navigational logic to FIND CALC a specific record and OBTAIN NEXT within
specific sets. Similarly, in dBase, programmers USE a specific index.

By referring to the physical data structures in the application programs, the
application programs become dependent upon them. Application programs then
require updating if changes occur to the physical structures. For example, if an i
is deleted in dBase, all application programs that use that index must be modifie

This dependency between the application programs and the physical data struc
significantly increases the cost of application development and maintenance. Du
the development of large complex computer systems, it is quite common to disc
inadequacies in the physical database design during the programming phase of
project. To remedy these inadequacies, the database administrator must implem
changes to the physical structures.

These schema changes in turn impact all existing programs which reference the
altered physical structures. These programs must be updated to reflect the new
schema. If the program relied on some altered physical structure to navigate the
database and other programming logic was based on this navigation, a significa
amount of re-coding may be required. Likewise, maintenance of existing system
often results in schema changes and therefore this dependency also drives up th
of maintaining an application.

In addition, procedural data access languages are often proprietary. Consequen
application programs become closely bound to the particular database systems
which they were developed. This binding of application programs to particular
database systems severely limits the ability to migrate these application program
improved and lower cost database systems.
15-2 Advanced Topics Guide

Data access languages

e to

n
sical
access

out
r an
d that
RE
o
ue

ees
 the

when
.

Declarative data access languages
With the introduction of SQL and relational database systems, it became possibl
sever the link between application programs and the physical data structures.
Declarative access languages only specify what data is needed by the applicatio
program, leaving it to the database system to determine how to navigate the phy
structures to access the required data. SQL is an example of a declarative data
language.

Decoupling the application programs and the physical data structures results in
several significant benefits:

• You can respond to changing data requirements without impacting
existing application programs. For example, if existing indexes become
obsolete, you are free to drop existing indexes and create new ones with
impacting existing programs. The new indexes created may result in eithe
increase or decrease in program performance; however, you are assure
the existing programs will execute without error (assuming they PREPA
their SQL prior to execution, some RDBMSs such as SQLBase may als
automatically recompile stored SQL access plans as well). This is not tr
with procedural data access languages that abort program execution
whenever physical structures are either not found or have been altered.

• Application program complexity is reduced. The database system, not the
programmer, determines how to navigate the physical structures. This fr
the programmer for other tasks, since this aspect of programming is often
most complex aspect of the program’s logic.

• Application program error is reduced. The complexities of data access
often result in program error unless the programmer is highly skilled and
extremely careful. The primary advantage of a computer is the ability to
execute simple instructions at a high rate of speed and without error.
Consequently, database systems, in general, out-perform programmers
determining how to navigate physical structures to access required data

The component of SQL database systems that determines how to navigate the
physical structures to access the required data is called the query optimizer. The
navigational logic to access the required data is the access path and the process used
by the query optimizer to determine the access path is called query optimization.
Advanced Topics Guide 15-3

Chapter 15 Introduction to Query Optimization

DML
st
 to as
g
 the

iven

ner
ulted

 real
nd

 that

so
,

g the
 the
d if
sult
Query optimization
The query optimization process determines the access path for all types of SQL
statements. However, the SQL SELECT statement (a query) presents the bigge
challenge to access path selection; therefore, the process is commonly referred
query optimization rather than data access optimization. Further, it is worth notin
that the term query optimization is a misnomer in that there is no guarantee that
query optimization process will produce an optimal access path. A more appropriate
term might be query improvement. For example, the best possible access path g
the known costs. However, we use the standard term to conform to convention.

Early relational database systems processed queries in a simple and direct man
without attempting to optimize either the query itself or the access path. This res
in unacceptably long query processing times, and led to the belief among some
application programmers that relational database systems were not practical for
world applications. To speed query processing times, a great deal of research a
testing was carried out to discover ways to increase the efficiency of query
processing. Query optimization can thus be defined as the sum of all techniques
are employed to improve the efficiency of processing queries.

Syntax optimization
The first progress in optimizing queries was in finding ways to restate the query
that it produced the same result, but was more efficient to process. For example
consider the following query:

SELECT VENDOR_CODE, PRODUCT_CODE, PRODUCT_DESC
FROM VENDOR, PRODUCT
WHERE VENDOR.VENDOR.CODE = PRODUCT.VENDOR_CODE AND
VENDOR.VENDOR_CODE = “100”
The most direct way to process this query is:

1. Form the Cartesian product of the vendor and product tables.

2. Restrict the resulting table to rows that meet the WHERE condition.

3. Project the three columns named in the SELECT clause.

If the vendor table has 50 rows and the product table has 1000 rows, then formin
Cartesian product would require 50,050 rows to be read and written. Restricting
result would require 50,000 more rows to be read from the resulting product, an
20 rows meet the WHERE condition, 20 rows would be written. Projecting the re
would then require 20 additional reads and writes. Processing the query in this
manner would require 100,090 rows to be read and written.
15-4 Advanced Topics Guide

Query optimization

reduce
mple

0”.

 20

uire

n

you
form
ll of

s to

ry

 any
ble

asic

,
 a
gain
 the
s N
However, one of the algebraic rules that apply to SQL is that

(table_a JOIN table_b) WHERE restriction on table_a
is equivalent to:

(table_a WHERE restriction on table_a) JOIN table_b
This means that restrictions on a table can be performed as early as possible to
the number of rows that must be processed further. Applying this rule to the exa
above, we can process the query as follows:

1. Restrict the rows in the part table to those for which VENDOR_CODE = “10
This would require 1000 reads and 20 writes.

2. Perform the join of the result to the vendor table in step 1. This would require
reads of the intermediate result above, which presumably could be kept in
memory. Joining the intermediate result with the vendor table would then req
100 additional reads, and 20 writes.

Processing the query would require only 1120 reads and 40 writes to produce an
equivalent result. The transformation described in this example is called syntax
optimization. There are many formulas for making transformations, and all moder
query optimizers use transformation rules to restate a query into a more efficient
form. The important point to realize is that these automatic transformations free
from having to try many equivalent forms of the same query in search of the one
that yields the best performance, because the optimizer is usually transforming a
these queries into the same final form.

Rule-based optimization
As progress was being made in improving the processing of queries, other effort
improve table access were taking place. These improvements included indexing
techniques and hashing. However, these improvements added complexity to que
processing. For example, if a table had indexes on three different columns, then
one of these indexes could be used to access the table (along with sequential ta
access).

In addition, many new algorithms to join tables began to appear. The two most b
join algorithms are:

• Nested Loop Join - A row is read from the first table, called the outer table
and then each row in the second table, called the inner table, is read as
candidate for the join. Then the second row in the first table is read, and a
each of the rows in the inner table is read again, and so on until all rows in
first table are read. If the first table has M rows, and the second table ha
rows, then M x N rows are read.
Advanced Topics Guide 15-5

Chapter 15 Introduction to Query Optimization

ich

nd.

s
ing

ch
join
 result

or

til it
f
n
atic

ason,
uning
 a

tions
te. To
the

on
• Merge Join - This join method assumes that the two tables are sorted (or
indexed) so that rows are read in order of the column (or columns) on wh
they will be joined. This allows the join to be performed by reading rows
from each table and comparing the join column values until a match is fou
In this way, the join is completed with one pass through each table.

Further, join operations are both commutative and associative; consequently, it i
theoretically possible to perform joins in any order. For example, all of the follow
statements are equivalent:

(table_a JOIN table_b) JOIN table_c
table_a JOIN (table_b JOIN table_c)
(table_a JOIN table_c) JOIN table_b
However, different access paths, join algorithms, and join orders may result in
significantly different performance. Consequently, when joining several tables ea
with multiple indexes, there exists literally hundreds of possible combinations of
orders, join algorithms and access paths to select from. Each produce the same
but with varying performance characteristics.

The first method of dealing with this complexity was to establish heuristic rules f
selecting between access paths and join methods, which is called rule-based
optimization. With this approach, weights and preferences are assigned to the
alternatives based on principles that are generally true. Using these weights and
preferences, the query optimizer works through the possible execution plans un
arrives at the best plan based on its rules. Some of the rules used by this type o
optimizer are based on the placement of variable tokens such as table or colum
names within the query’s syntax structure, when these names are moved a dram
difference in the performance of the query can sometimes be realized. For this re
rule-base optimizers are said to be syntax sensitive, and one of the methods for t
this type of database system involves moving tokens to different positions inside
statement.

Rule-based optimization provides satisfactory system performance in those situa
when the heuristics are accurate. However, often the general rules are inaccura
detect these situations, the query optimizer must consider the characteristics of
data such as:

• The number of rows in the table

• The range and distribution of values for a given column

• The row width and consequently the number of rows per physical page
disk

• The height of an index

• The number of leaf pages in an index
15-6 Advanced Topics Guide

Query optimization

. This

ed
he

umber
. The
 to

:

dex
 have

uld

ery
g

cks
or

or
These data characteristics can greatly affect the efficiency of processing a query
resulted in the next type of optimization.

Cost-based optimization
Cost-based optimization is similar to rule-based optimization, except that cost-bas
optimizers use statistical information to select the most efficient execution plan. T
cost of each alternative execution plan is estimated using statistics such as the n
of rows in a table and the number and distribution of the values in a table column
cost formulas typically consider the amount of I/O and CPU instructions required
perform the execution plan. The statistics are stored in the system catalog and
maintained by the database system.

To understand how statistics can make a difference, consider the following query

SELECT CUST_NBR, CUST_NAME
FROM CUSTOMER
WHERE STATE = “FL”;
If an index exists on the STATE column, a rule-based optimizer would use this in
to process the query. However, if ninety percent of the rows in the customer table
FL in the STATE column, then using the index is actually slower than simply
processing the table sequentially. A cost-based optimizer, on the other hand, wo
detect that using the index would not be advantageous.

The cost-based optimization approach today represents the state-of-the-art in qu
optimization techniques. Most high quality relational database systems, includin
SQLBase, employ a cost-based optimizer.

Query optimization steps
While the query optimizers of modern relational database systems differ in
sophistication and complexity, they all follow the same basic steps in performing
query optimization:

1. Parsing - The optimizer first breaks the query up into its component parts, che
for syntax errors, and then converts the query to an internal representation f
further processing.

2. Conversion - The optimizer next applies rules for converting the query into a
format that is syntactically optimal.

3. Develop Alternatives - Once the query has undergone syntax optimization, the
optimizer next develops alternatives for processing the query.

4. Create Execution Plan - Finally, the optimizer selects the best execution plan f
the query, either by following a set of rules (rule-based optimization) or by
computing the costs for each alternative (cost-based optimization).
Advanced Topics Guide 15-7

Chapter 15 Introduction to Query Optimization

sed, it
efore,
s the
Because steps 1 and 2 take place without regard to the actual data in the tables u
is not necessary to repeat these steps if the query needs to be recompiled. Ther
most optimizers will store the result of step 2 and use it again when it reoptimize
query at a later time.
15-8 Advanced Topics Guide

ess

onal

Advanced Topics Guide
Chapter 16

Overview of the
SQLBase Query
Optimizer

In this chapter we:

• Review basic relational operators implemented within the SQL data acc
language.

• Examine the physical operations used by SQLBase to perform the relati
operators.

• Learn how to view SQL statements as query trees, which simplifies the
processing steps required for their execution.
Advanced Topics Guide 16-1

Chapter 16 Overview of the SQLBase Query Optimizer

ess
cuting

e
 are

rate

d by
hese

ll
h is
is on
h to

s
hat
his
E

hose

ns,
other

final
hich
xcept
uent
Introduction
In the next three chapters we examine the query optimizer contained within
SQLBase. The SQLBase query optimizer (often simply called the optimizer) is a
specific implementation of a cost-based optimizer, meaning its decisions on acc
path selections are based on the estimates of potential costs associated with exe
a particular access plan.

The basis of these cost estimates are the statistics contained within the SQLBas
catalog and control areas within the database. The advantages of this approach
that the access plan decisions made by SQLBase can be made with very recent
information concerning the actual database contents. Just how recent and accu
this information is depends on the procedures you follow in administering your
databases.

This chapter reviews the basic relational operators implemented by SQL followe
an overview of the techniques that SQLBase may use when actually executing t
operations. This set of techniques, called physical operators, is the set of actions the
optimizer considers when building access plans.

While we summarize the actions taken to perform each physical operator, we wi
also briefly summarize the major factors comprising the cost of the operator (whic
usually I/O). Finally, the structure of an access plan is explained, with an emphas
the heuristics used by the optimizer when building a set of access plans on whic
perform cost analysis.

Throughout the next three chapters, examples that illustrate optimizer operation
generally use the SQL SELECT statement. You should keep in mind, however, t
all SQL Data Manipulation Statements (DML) are processed by the optimizer. T
includes not just the SELECT statement, but the INSERT, UPDATE, and DELET
statements as well.

The steps involved in optimizing these other statements are virtually identical to t
of the SELECT, the only difference being operations used to perform locking and
logging during update operations. These exceptions are covered in Concurrency
Control and Logging and Recovery chapters. The benefits of using the SELECT
statement for examples is that the SELECT offers many more relational operatio
such as a join, which exercise a much wider variety of optimizer processes than
DML statements.

A secondary advantage of using SELECT statements for examples is that the
execution of a SELECT statement creates a result set which visually shows the
output of SQLBase’s processing. This contrasts to the other DML statements, w
change the state of the database, but these changes are not visible externally e
through the return of error codes or other environmental variables. Only a subseq
16-2 Advanced Topics Guide

Relational operations

the

e
in
 that
ntax

, and

 into

 the
class

ed

 have
 (for
ata

s.

n
SELECT statement will reveal the changes which were made to the contents of
database by the execution of one of these DML commands.

Relational operations
The basic operators of the relational algebra were defined by E. F. Codd when h
published his landmark paper delineating the relational model access language
1972. The operations defined in this relational algebra form the logical operators
must be processed by the optimizer. These logical operators are implicit in the sy
of SQL DML statements submitted to SQLBase for processing.

The following relational algebra operations have one or more relations as inputs
one relation as output. A relation is simply a table of some degree n, where n is the
number of attributes (or columns) in the table. These operations are broken down
two classes: traditional set operations and special relational operators. While the
traditional set operations are sufficient to process most multiple relation queries,
special relational operators specify the desired results more efficiently. This last
of operators is the basis of the SQL language, and is examined in more detail
throughout the remainder of this chapter. The traditional set operations are defin
here to provide background information.

• Traditional set operations

An important distinction of the traditional set operators is that (with the
exception of the Cartesian product) the relations used as input to these
operations must be of the same number of columns, with each matching
attribute defined on the same domain. This means that each table must
the same number of columns, and that each column pair of any position
example, column 1 of each table) must be defined with the exact same d
type and scale.

• Union

The union of two relations is all rows belong to either or both relation
It can be formed by appending one table to the other and eliminating
duplicate rows.

• Intersection

The intersection of two relations consists of the rows which appear i
both relations. Any row which appears in only one table, but not the
other, is not a member of the intersection set.
Advanced Topics Guide 16-3

Chapter 16 Overview of the SQLBase Query Optimizer

irst
tive

le.

n

the

tions:

ced

 of

er

lect
• Difference

The difference between two relations is all rows which belong to the f
table but not to the second. Note that this operation is not commuta
like the other traditional set operators, meaning that .

• Cartesian product

The Cartesian product of two relations is the table resulting from
concatenating each row of one table with every row of the other tab
The table resulting from this operation contains as many rows as the
product of the rows in the input tables. This means that the Cartesia
product of a 15 row table and a 50 row table contains 750 rows. As
mentioned previously, this is the only traditional set operation where
format of the two tables can differ.

• Special relational operations

SQL generally uses these operations more than the traditional set opera

• Projection

The projection operation limits the columns of a table that are referen
in a SQL statement.

• Selection(restriction)

• A select limits the result set to only those rows that meet the
qualifications. The selection criteria compares one or more columns
the table to either one or a set of constants or expressions.

• Join

The join operation creates a result set by concatenating rows togeth
from multiple tables. These concatenated rows must also meet the
specified join criteria, which is a comparison between one or more
columns of the tables involved. These comparisons differ from the se
operation in that they compare columns of different tables.

Because of the central role played by these special relational operators in SQL
statements, we will now examine them in more detail.

A B– B A–≠
16-4 Advanced Topics Guide

Relational operations

tion

code,
n the

ions
aluate
tion:

 one
s

te,

ch is
Projection
When a SELECT references specific columns of one or more tables, only those
columns are returned:

SELECT NAME, PHONE FROM CUSTOMER;
The alternative to performing a projection is to use the asterisk (*) wild card nota
which causes all columns to be included:

SELECT * FROM CUSTOMER;
Note that many sites have standards prohibiting this notation from being used in
since changing the number of columns in the table can have an adverse affect o
program containing the statement.

Selection
The select is the row equivalent of the column projection operation. In SQL, the
WHERE clause specifies a selection by naming columns in comparison express
with either constants, that consist of one or a set of values, or expressions that ev
to a single value or set of values. The following are examples of the select opera

SELECT * FROM CUSTOMER
WHERE NAME = ‘JONES’;
SELECT * FROM PRODUCT
WHERE STOCK_QTY <= REORDER_QTY;
SELECT * FROM ORDERS
WHERE (STATUS IN (‘C’,’P’,’S’)) AND
(TOTAL_AMT > 1000);
Each of the comparisons contained within the WHERE clause is called a predicate.
Some SQL statements, such as the last example shown here, contain more than
predicate. When the operation specified in a predicate is performed on a row, it i
called applying the predicate. If the predicate evaluates to TRUE, it is said to be
satisfied, otherwise it is not satisfied. When a statement has more than one predica
they must be connected by one of the Boolean operators AND or OR. When all of the
predicates of a statement are connected by AND, they are said to be AND-connected,
or conjunctive. When they are all connected by OR, they are OR-connected, or
disjunctive. This terminology of predicates plays an important role in how they are
used by the query optimizer, as we shall see later.

Note that the form of the WHERE clause that compares columns of two different
tables is not a select operation, but rather a specification for a join operation, whi
covered next.
Advanced Topics Guide 16-5

Chapter 16 Overview of the SQLBase Query Optimizer

every
n is

ient
esult

ust
 by

ct

 the
t the
me

 In

 in

 and

bles,
ion.
o
join

 join.
Join
A join creates its result set from two or more tables in a similar manner as the
Cartesian product mentioned earlier; it concatenates each row of one table with
row of the other table. The difference between the Cartesian product and the joi
that only rows meeting some specified join criteria are eligible for inclusion in the
result set. This is logically equivalent to building the Cartesian product, then
performing a select operation against it. However, the join allows for a more effic
operation with most query optimizers because they can eliminate rows from the r
set without first forming the entire Cartesian product as an intermediate result.

To perform a join, use the SQL FROM and WHERE clauses. The FROM clause m
name each input table to the join. The WHERE clause specifies the join criteria,
comparing one or more columns of one table with columns of another table. The
predicates used as join criteria determine how many rows of the Cartesian produ
will be bypassed in processing the join. The more restrictive the join criteria are,
more efficient the join will be when compared to the Cartesian product (note tha
Cartesian product is formed by not specifying any join criteria at all). Here are so
examples of joins:

SELECT NAME, AMOUNT
FROM CUSTOMER, RECEIVABLE
WHERE CUSTOMER.CUST_NO = RECEIVABLE.CUST_NO;
SELECT NAME, QTY, DESC
FROM CUSTOMER C, ORDER O, PRODUCT P
WHERE (C.CUST_NO = O.CUST_NO)
AND (O.PROD_NO = P.PROD_NO);
In the second example, the ‘C’, ‘O’, and ‘P’ letters allow you to qualify column
names with their correct tables without having to spell out the entire table name.
SQL, these are called correlation variables. Since most column names need to be
qualified they are often used in joins due to the presence of multiple table names
the FROM clause.

Two important characteristics of the join operation are that it is both commutative
associative in nature:

A JOIN B = B JOIN A (commutative)
A JOIN (B JOIN C) = (A JOIN B) JOIN C (associative)
(A JOIN B) JOIN C = B JOIN (A JOIN C) (both)
The effect of these properties is that when processing a join of more than two ta
the optimizer may select any sequence of two table joins to complete the operat
This allows the optimizer to treat a join of any number of tables as a series of tw
table joins, which avoids having to have special physical operations available to
any specific number of tables.

The type of comparison performed is often used to further refine the name of the
These sub-classifications of the join are briefly covered below.
16-6 Advanced Topics Guide

Relational operations

r.
ed to

 in

ed,
e
 the

that
able
ithin

e

er
t has
f the
the
rder
Equijoin
The most common example of the join is the equijoin, which uses the ‘=’ operato
This version of the join operation is used whenever business relationships are us
combine information from two tables. These joins occur by setting a primary key
the parent table equal to the foreign key in the child table.

SELECT C.CUST_NO, C.CUST_NAME, O.ITEM_NO, I.DESC
FROM CUST C, ORDER O, ITEM I
WHERE (C.CUST_NO = O.CUST_NO) AND
(O.ITEM_NO = I.ITEM_NO);

Natural join
This is a particular form of equijoin where all columns of the two tables are includ
with the exception of one set of the key columns, which are duplicated across th
tables. This is a full equijoin between two tables without any projection except for
elimination of the duplication of the key columns.

Semijoin
The semijoin operation is equivalent to an equijoin with a subsequent projection
only includes the columns of one of the join tables. This is useful when rows of a t
are needed that meet a selection criteria that is defined in terms of membership w
another table’s foreign key column. An example would be the set of all products
which have been ordered during January of 1993:

SELECT P.PROD_NO, P.PROD_DESC
FROM PRODUCT P, ORDER O
WHERE (O.PROD_NO = P.PROD_NO) AND
(O.ORD_DATE BETWEEN JAN-1-1993 AND JAN-31-1993);
The :equijoin is also useful in a distributed environment when the two tables to b
joined are at different nodes on the network.

Outerjoin
The outerjoin allows the non-participating rows of one of the joined tables to be
included in the result set. The reason these rows are termed non-participating is
because they contain key values which are not referenced by any rows of the oth
table. For example, a row in the product set which contains a product number tha
never been ordered by any customer would be a non-participating row in a join o
product table with the order table. In SQLBase, these rows could be included in
result set anyway through the specification of the outerjoin operator, ‘+’, on the o
table key as in the following example:

SELECT *
FROM PRODUCT P, ORDER O
WHERE P.PROD_NO = O.PROD_NO(+);
Advanced Topics Guide 16-7

Chapter 16 Overview of the SQLBase Query Optimizer

s of

ion
. The
ed

h

t

uery
of
ich is
he

 type

able
alue

 the
ffect,
Selfjoin
A selfjoin is an equijoin of a table with itself. This is also called a ‘recursive join’.
Note that in this case, you must assign correlation variables in order to avoid
ambiguous column references, as in the following example which lists the name
all employees and their assigned managers:

SELECT E.NAME, M.NAME
FROM EMPLOYEE E, EMPLOYEE M
WHERE E.MNGR_NO = M.EMPLOYEE_NO;

Aggregation
While aggregation was not originally specified as a relational operation, its inclus
as a standardized capability in SQL served to make it a commonplace operation
purpose of aggregation is to represent a table of information through some deriv
statistic, such as the sum or mean (average) of a set of numbers.

SQL supports two types of aggregation, the simplest is scalar aggregation, whic
derives a single output from a column of a relation. Scalar aggregation in SQL is
performed through the inclusion of an aggregate function in a query that does no
have any GROUP BY clause. Examples of scalar aggregation include:

SELECT SUM(SALARY) FROM EMPLOYEE;
SELECT COUNT(*)
FROM EMPLOYEE
WHERE NAME = ‘DAVE’;
The first query produces the total salary paid to all employees, while the second q
tells how many employees are named ‘DAVE’. The distinguishing characteristic
these queries is the presence of some aggregate function in the SELECT list wh
allowed to range over the entire result set of the table access (after performing t
project and select operations).

The second type of aggregation supported by SQL is function aggregation. This
of aggregation uses the same aggregate functions as scalar aggregation. The
difference between the two is that function aggregation always creates another t
as output. This contrasts with scalar aggregation, which simply returns a single v
as output.

The SQL syntax of a statement performing function aggregation always includes
GROUP BY clause. The columns named in the GROUP BY clause become, in e
the key to the new table that is output from the statement. Examples of function
aggregation are:

SELECT DEPT, AVG(SALARY)
FROM EMPLOYEE
GROUP BY DEPT;
SELECT @MONTH(BIRTH_DATE), COUNT(*)
16-8 Advanced Topics Guide

SQLBase physical operators

 while
th
anges
n the

cified
t step,
e uses

ical

f the
gle
ut of
to an

 disk
rary

c

he
data
n
ence.

ts
t be
sfied
e
FROM EMPLOYEE
GROUP BY @MONTH(BIRTH_DATE);
Here the first query lists the department and average salary for each department,
the second lists the birth month and number of employee birthdays in each mon
throughout the year. In each of these statements, the aggregation function only r
over the rows of the input table that have equal values in the columns specified i
GROUP BY clause.

SQLBase physical operators
When SQLBase executes a query plan, it reads the plan and performs each spe
step in turn. Each of these steps tells SQLBase what operation to perform at tha
and what inputs and outputs are required. When executing query plans, SQLBas
physical operators. These are different than logical operators such as SQL statements
which specify relational operations that must be performed. For every possibly log
operator, there is at least one, and possible many, physical operators that allow
SQLBase to execute the operation in an efficient manner.

Every physical operator has either one or two inputs, depending on the nature o
operation. It also has one output table (which of course may consist of only a sin
row, or even no rows). This output table may be a result set which is the final outp
the query, or it may be an intermediate table which will be used as an input table
operation later in the query plan. One query plan can contain many of these
intermediate tables. They can be stored within SQLBase’s cache memory, or on
in a temporary file. When a step in the query plan is finished executing, the tempo
input tables it uses are either freed from memory or deleted from disk.

Sort
The sort operation is performed whenever a table must be placed into a specific
sequence according to one or more columns, which are collectively called the sort key.
This physical operator has one table as input, and one table as output. The basi
technique SQLBase uses for sorting is the postman sort, which is a radix sort.

Aggregation
The aggregation operator also has one table as input, and one table as output. T
SQLBase physical aggregation operator performs a serial scan of the qualifying
rows, with the aggregate function calculation being performed for each row. Whe
SQLBase performs simple scalar aggregation, the input rows can be in any sequ
However, when aggregate functions are being evaluated through SQL statemen
containing GROUP BY clauses, the input table to the aggregation operation mus
in sequence by the columns specified in the GROUP BY. This prerequisite is sati
by the query optimizer through the placement of either a sort operator prior to th
Advanced Topics Guide 16-9

Chapter 16 Overview of the SQLBase Query Optimizer

rows

ble.
stitute
ss

n, in
ld be

iated
tracted
in the
the
 for a
 pages

ows of
ied for

h
e

ows
 the

red
 in

ortion
 in the

se,
tmost
aggregation, or through the use of a table access technique which returns table
in a specific sequence (discussed later in this chapter).

Disk access operation
This group of physical operators is responsible for returning rows from a single ta
These rows can then either be processed by other steps in the query plan, or con
the final result set, depending on the SQL statement being processed. Disk acce
operators are entirely responsible for the access of data from disk, however.
Therefore, one of these operators always appears as the first step of a query pla
order to perform the access of data to whatever table the optimizer decided shou
processed first.

Table scan
This is the simplest technique for accessing a base table. Each data page assoc
with the table is read in succession. For each page, the rows on that page are ex
for processing. Note that this extraction may require accessing additional pages
form of either extent pages or overflow pages (in the case of hashed tables). In
absence of any extent or overflow pages, the number of disk accesses required
table scan is equal to the number of data pages assigned to the table, including
required for any LONG VARCHAR columns that may be specified.

Index leaf scan
This access technique is used whenever a specific sequence is desired for the r
a table, and an index matches this sequence, but there are no predicates specif
the table that are present in the index. In other words, this access technique can
substitute for a sort if the index sequence matches the desired table sequence.

The basis for this technique is the B+Tree modification to the basic B-Tree, whic
links together the leaf pages of an index. This list of linked leaf pages is called th
sequence set of the index. It is traversed in key sequence, with each index node’s r
accessed as the node is processed. This means that the worst case I/O count is
number of leaf pages in the index plus the number of rows in the table. This is
sometimes improved on, however, by the table being either fully or partially cluste
in the index sequence. We will see how the optimizer accounts for this possibility
the next chapter.

Matching index scan
The matching index scan uses the full capabilities of SQLBase’s B+Tree index
structures. This technique is useful whenever a SQL statement only requires a p
of a table to be processed, based on predicates that match the columns present
index. Since the generic capabilities of B+Tree indexes are exploited by SQLBa
this access technique can use any index which has predicate columns in the lef
key positions. The optimizer generally uses this technique if the predicates are
16-10 Advanced Topics Guide

SQLBase physical operators

x tree
om

 must
e
 the
s in

is
y

shed
t.

ue are
ely
w, or
e
ced a

he

onal
re.
f the
 as

uce a

, the

 we
restrictive enough to make the extra I/Os for the index worthwhile. Also, if an
inequality predicate is used for some index column, this technique uses the inde
to find the starting leaf, and then scans the sequence set forward or backward fr
that point.

The number of I/Os incurred by this access technique is one for each level in the
index, plus one for each index node that is accessed, plus one for every row that
be retrieved. The optimizer estimates costs associated with this access techniqu
using an index statistic called the selectivity factor, which is explained in detail in
next chapter. Briefly, the selectivity factor describes the expected number of row
the table that would satisfy a predicate.

Hash access
A table which has a clustered hashed index placed on it may be accessed via th
index whenever all of the columns contained within the index are used in equalit
predicates in an SQL statement. As explained in Chapter 10, Hashed Indexes, the
hashing technique lacks any generic or scanning capabilities. This is why the ha
index key must be fully specified with the equality predicate in the SQL statemen

Whenever the restrictive conditions placed on the use of the hash access techniq
met, this is probably the quickest possible alternative for table access and will lik
be selected by the optimizer. The I/O cost of this technique is one I/O for each ro
set of rows, which has the key specified in the predicates. Extra I/O costs may b
incurred for searching a chain of overflow pages if the hashed table has experien
large number of collisions, and this condition may cause the optimizer to reject t
hash access technique.

Join operations
The relational join is one of the most frequently executed operations of any relati
database. It can also be extremely time consuming due to its data intensive natu
This is because the most simplistic implementation of a join requires every row o
one table to be compared to every row of another table. In order to execute joins
quickly and efficiently as possible, SQLBase selects from among a number of
alternative techniques. All of these operators accept two tables as input, and prod
single table as output. These input and output tables can be any combination of
database tables, temporary tables, or final result sets.

Terminology that is common to all join algorithms is the naming of the two tables
involved. Since one row of a table must be compared to all rows of another table
table for which a row is held is called the outer table. The table which is scanned
while a row is held from the outer table is called the inner table. These terms first
originated with the loop join algorithm, where they are especially appropriate, as
shall see next.
Advanced Topics Guide 16-11

Chapter 16 Overview of the SQLBase Query Optimizer

for
oth
d in

rming
y.

nner
 the
w row

r of I/
ber

r
 the
es the

e

p
y can

e of
his is

w
ed to
an
f the
e

les to
nique
and
s join
al to
Simple loop join
This is the most straightforward method for joining two tables, and can be used
any join criteria. It can also be the worst performing join operation, especially if b
input tables are large. One advantage of the simple loop join is that it can be use
any case, regardless of the type of join criteria specified or the absence of index
structures. Also, there are cases where the simple loop join can be the best perfo
technique, particularly if one of the input tables can fit entirely into cache memor

The loop join algorithm obtains a row from the outer table, then scans the entire i
table to find the rows which meet the join criteria. Whenever the criteria are met,
rows are appended and output. When the end of the inner table is reached, a ne
is obtained from the outer table, and the scan of the inner table is started again.

Due to the nested loop structure of this technique, the worst case for the numbe
O operations is the number of data pages in the inner table multiplied by the num
of data pages in the outer table. This can be improved on dramatically if the inne
table is small enough to fit into cache memory, when the number of I/Os drops to
sum of the data pages in the two tables. For this reason, SQLBase always choos
smaller of the two tables to be the inner table when cache is sufficient to hold th
table, at which point this join technique may become less costly than other
alternatives.

The following two alternative access methods are enhancements to the basic loo
join. They could be used whenever a suitable index is present, in which case the
speed up the join process greatly over the simple loop join.

Loop join with index
This variation on the nested loop join can be used when there is an index on on
the tables that has the join columns in the high order positions of the key. When t
the case, the optimizer uses the table with the index as inner table of the loop
algorithm, and uses the index to limit the search for rows matching the current ro
being held from the outer table. This greatly decreases the number of I/Os need
process the inner table. The best case is when the inner table is clustered, and
equijoin is being performed, in which case the number I/Os is equal to the sum o
number of data pages in the two tables, plus the height of the index tree, plus th
number of rows in the outer table. The last two cost components account for the
overhead of accessing the index structure when joining row occurrences.

Loop join with hash index
This enhancement of the loop join technique can be applied when one of the tab
be joined has a hash index placed on it. The other two prerequisites for this tech
are that the hash index must be placed on all of the columns of the join criteria (
no others), and the join must be an equijoin. When these conditions are met, thi
technique can be very efficient. The worst case is when the number of I/Os is equ
16-12 Advanced Topics Guide

SQLBase physical operators

table.
hen

on in

r both
merge
n
able.
n

ter
hen
 are
le.

 join
to the
wo
o fetch
 sum

n the
n it
ned by
s the

ible
 The
o the

e

ry file.
the number of data pages in the outer table plus the number of rows in the inner
This only occurs if every row in the inner table is referenced by the outer table. W
not all rows of the inner table are referenced in the outer table, there is a reducti
the number of I/Os.

Index merge join
This technique can be used when there are indexes present on the join criteria fo
tables. The basic algorithm is to scan the sequence set of the two indexes, and
rows from the table based on their join criteria being satisfied. For instance, whe
processing an equijoin, first an entry is read from the sequence set of the outer t
Then, an entry is read from the inner table’s sequence set. If the inner table’s joi
column is less than the outer table, the scan of the inner table’s sequence set
continues. If the inner table’s join column is greater than the outer table’s, the ou
table’s sequence set is scanned until either equal or greater values are found. W
the join columns in the two indexes satisfy the join criteria, the rows of the tables
read from the data pages, appended to each other, and written to the output tab

The I/O cost of this technique depends on how many rows of the tables meet the
criteria. The best case is on an equijoin of primary keys, when the cost are equal
number of leaf nodes in the two sequence sets, plus the number of rows in the t
tables. If the tables are also clustered by the sequence sets, the number of I/Os t
rows is reduced to the number of data pages allocated to the two tables plus the
of leaf pages on the two indexes.

Hash join
This technique can be used for equijoins only, and does not require any indexes o
join criteria for the two tables. The algorithm first performs the setup phase, whe
scans the outer table and places each row into a hash table at a location determi
applying a hash function to the join criteria. The smaller table is always chosen a
outer table, in order to minimize the memory demands of the hash table.

In the second phase, called the probe, the inner table is scanned and the same hash
function used in the setup is applied to the join columns in order to locate a poss
match. Any rows found in the hash bucket from the first table are then examined.
rows that satisfy the join criteria are appended to the inner table row and written t
output table.

This can be a very rapid join technique, especially when the smaller table can be
hashed into a table fitting in memory. When this is the case, the I/O required is th
sum of the data pages of the two tables. Otherwise, additional I/O is required to
partition the hash table into segments, and manage those segments in a tempora
Advanced Topics Guide 16-13

Chapter 16 Overview of the SQLBase Query Optimizer

uces
on of

ic of
the

n the

e first

called

mate
rtain

 the
y

ult
ne
in I/
tain

 is
 are
That
tion.
ents
Imbedded operators
The two most common relational operators, select and project, are implemented
within the other physical operators. This allows the optimizer to perform these
operations at the earliest possible time in an access plan, which immediately red
the amount of data that the remainder of the plan must handle. The implementati
the project operator is further enhanced by performing index-only access when
appropriate, as explained in the following paragraphs.

Select
The select operation restricts access to rows that do not satisfy the predicate log
the query. These predicates are evaluated as early as possible when executing
query, which is usually the first time the row containing the column named in the
predicate is accessed. Each file access physical operator in SQLBase accepts
predicates to perform this row filtering when accessing a table. If the predicates i
query are conjunctive, or and-connected, a form of logic called short-circuit testing
may be performed. This technique allows the row to be discarded as soon as th
unsatisfied predicate is found.

When the SQLBase optimizer estimates the cost of a query, the effect of the
predicates used for the select operation is taken into account through a statistic
the selectivity factor. This figure represents the proportion of rows in a table that
would be expected to satisfy a particular predicate. The optimizer makes its esti
of selectivity factor based on statistics associated with the table’s indexes and ce
heuristics concerning the predicate’s comparison operator. We will examine this
process in more detail in the next chapter.

Project
The project operation is implemented within other physical operators by passing
list of columns to be retrieved to any file access operator. That operator then onl
includes those columns in its output table. Performing the project at the earliest
possible time in the query plan reduces the width of intermediate tables and res
sets, thereby saving space both in memory and temporary disk files. Note that o
side effect of performing the project at page access time is a possible reduction
Os due to avoiding access to extent or LONG VARCHAR pages which do not con
needed columns.

Index-only table access
Another benefit of building the project operation into the other physical operators
the ability to perform index-only access. This occurs whenever the columns that
specified for projection in the query are all present in one of the table’s indexes.
index must also perform whatever predicate logic is required for the select opera
When this happens, SQLBase’s optimizer realizes that the queries data requirem
16-14 Advanced Topics Guide

Query plan structure

ficant

L

age,
mer’s
s the
s

e

he
ore

o a

 tree

ical
is
right.
LY’
t.

es of
can be satisfied without access to the table’s data pages. This can result in signi
I/O savings, depending on the number of rows which satisfy the predicates of the
query.

Query plan structure
When the optimizer groups a set of physical operators together to execute a SQ
statement, the resulting specification is called a query plan.

An analogy to the programming task makes the role of the query plan easier to
understand. A programmer codes instructions in some high level computer langu
such as C, which is then compiled to produce an executable form of the program
code. This executable form uses machine instructions to talk to the CPU that run
program. When the CPU executes the program, it processes machine instruction
rather than the programmer’s original code.

Similarly, a programmer codes SQL statements, which are then processed by th
optimizer to produce the executable form of the programmer’s SQL, which is the
query plan. When SQLBase executes the SQL statement, it actually processes t
query plan, not the original SQL. Just as the C code has been translated into a m
rapidly executable form by the C compiler, the SQL statements are converted int
form which the SQLBase engine can process quickly and efficiently.

Query trees
One way to view a query that provides for easier understanding is called the query
tree. This is a tree structure, where the final result of the query is at the top of the
(the root), and the database tables involved in the query are at the leaves. The
intermediate nodes of the tree, between the leaves and the root, represent phys
operations that are performed during the query execution. When the query plan
executed, the sequence of node traversal is from bottom to top, and from left to
This is the sequence in which the operations are printed when the ‘SET PLANON
option of SQLTalk is executed to print out a query plan for a given SQL statemen

The following example shows a query tree for a SQL statement that gets the nam
authors who published books in 1993:

SELECT A.ANAME
FROM AUTHORS A, BOOKS B
WHERE (B.DATE_PUBLISHED = ‘1993’) AND
Advanced Topics Guide 16-15

Chapter 16 Overview of the SQLBase Query Optimizer

tion,
tree.
r

 plan

ject
n
tree
(A.ANAME = B.ANAME);

Building query trees
When the optimizer builds query trees for cost estimation and possible final selec
it uses some simple rules that determine the placement of various nodes in the
These rules allow the optimizer to limit the number of query trees that are built fo
further consideration by the cost estimation task. By limiting the possible access
alternatives in this way, the optimization process can execute more efficiently.

One of the important heuristics is to apply restrictions such as the select and pro
operators as early as possible. This is because select and project operations ca
reduce the size of the result table. In figure B, the optimizer improves the query

A.ANAM E
proje ct

B .YEAR='1 9 93'
select

A .ANAM E=B.AN AME
join

A B

Figure 16A - A query tree for: Get names of authors who published
books in 1993.
16-16 Advanced Topics Guide

Query plan structure

 to

in
rse,

the
em as

in a

ere
of Figure A by applying a select first to reduce the number of rows that are input
the equijoin operation.

Furthermore, when multiple select operations are performed in a query against a
table, the ones with the lowest selectivity factor are performed lower in the tree,
order to reduce the size of the intermediate results as rapidly as possible. Of cou
when predicates can be evaluated depends on when all the data referenced by
predicate is available. SQLBase converts some predicates in order to evaluate th
rapidly as possible, as we shall now see.

Predicate logic conversion
Whenever multiple predicates are specified using the relational select operation
query, an important heuristic is to convert them into an equivalent condition in
conjunctive form, which is a regrouping created by ANDing a set of predicates wh
each predicate contains only OR operators. For instance, the clause:

WHERE COL1>5 OR (COL2<500 AND COL3>150)
can be rewritten as:

WHERE (COL1>5 OR COL2<500) AND (COL1>5 OR COL3>150)

A .A N AM E

B .Y EAR = '199 3 '

A .AN AM E= B.AN AM E

 A B

p ro jec t

se le c t

join

Figure 16B - Using a heuristic rule to move the SELECT operator
down in the query tree in Figure A.
Advanced Topics Guide 16-17

Chapter 16 Overview of the SQLBase Query Optimizer

ry
s to

pact
The conjunctive form is preferable since it can be evaluated with short-circuit
techniques. A set of predicates in conjunctive form evaluates to TRUE only if eve
OR grouping evaluates to TRUE. It evaluates to FALSE if any grouping evaluate
FALSE. In the short-circuit technique, if the result of evaluating any single OR
grouping is FALSE, there is no need to evaluate other conditions at all. Since the
number of comparison operations that are performed in a query have a direct im
on the amount of CPU time needed, the short-circuit evaluation of predicates in
conjunctive form can save CPU cycles.
16-18 Advanced Topics Guide

s

lan

Advanced Topics Guide
Chapter 17

SQLBase Optimizer
Implementation

In this chapter we:

• Discuss the details of how the SQLBase query optimizer performs acces
plan analysis.

• Summarize the statistical information available to the SQLBase query
optimizer to develop access plan cost estimates.

• Explain how the query optimizer identifies possible access plans for
processing an SQL statement.

• Review the two cost components SQLBase estimates for each access p
using statistics about the database:

• Total number of I/O operations.

• Total CPU time required.
Advanced Topics Guide 17-1

Chapter 17 SQLBase Optimizer Implementation

istics
s plan.

me of

red

te
d. If

y the
s
he

rder

r
iable
ted
our

ystem
ns
Database statistics
When the SQLBase query optimizer performs access plan selection, it uses stat
about the database to estimate the costs associated with each candidate acces
These statistics, which are stored in the SQLBase system catalog tables, are
associated with the various tables and indexes contained within the database. So
these statistics are maintained dynamically, meaning that SQLBase keeps them
internally updated during normal server operations. The majority of statistics,
however, are maintained statically, meaning that they are only calculated and sto
when specific events occur.

The event that usually causes these statistics to be refreshed is the ‘UPDATE
STATISTICS’ SQL statement. This command examines a database’s tables and
indexes, calculates the required statistics, and then stores them in the appropria
tables. Statistics are also created for an index or a table when it is initially create
no rows are present at this time, the statistics are set to default values.

Starting with SQLBase version 6.0, statistics can now also be updated directly b
DBA, using the user modifiable statistics feature. In this feature, the access path
chosen by the optimizer reflect the cost calculations that would be performed if t
database was populated in a manner that would yield the statistics placed in the
catalog by the DBA. In this way, the DBA can influence the optimizer into making
decisions that are based not on the current database contents, but rather on the
database as the DBA projects it will be populated at some point in the future. In o
to accurately calculate and store these statistics, the DBA must have a thorough
understanding of what these statistics mean.

Statistics that are dynamically maintained by SQLBase are used by the optimize
whenever the DBA has not overridden the catalog statistics using the user modif
statistics feature. When you override the catalog statistics with your own calcula
values, the optimizer will them ignore the dynamic internal statistics in favor of y
catalog statistics.

Table statistics
The statistics associated with database tables are maintained in two separate s
catalog tables, each of which is described in the following paragraphs. All colum
not specifically mentioned as being maintained dynamically are static, and are
populated by running UPDATE STATISTICS or at CREATE time.
17-2 Advanced Topics Guide

Database statistics

ic
en
ext

hip

tent
h is

n

ges.

ns
 Note
and

 in
ta
Statistics in SYSTABLES
The following statistical information is maintained in these columns of the
SYSADM.SYSTABLES table in the system catalog:

• ROWCOUNT

This is the number of rows in the table. This statistic is maintained
dynamically in the table’s control page, but is only externalized to the
SYSTABLES column when the UPDATE STATISTICS command is
executed.

• PAGECOUNT

This is the total number of data pages in the table. This is also a dynam
statistic that is externalized when UPDATE STATISTICS is run. Also, wh
this column is maintained by the system, it will always be the sum of the n
two columns, ROWPAGECOUNT and LONGPAGECOUNT. If, on the
other hand, the DBA has set these statistics explicitly, then this relations
may not hold true.

• ROWPAGECOUNT

This is the number of base row pages occupied by the table, plus any ex
pages that may also be allocated. This is another dynamic statistic whic
only externalized on command.

• LONGPAGECOUNT

This is the number of pages allocated to the table for the storage colum
defined with the LONG VARCHAR data type. This is a dynamic statistic
which is only externalized on command.

• EXTENT_PAGECOUNT

This is the average contribution of data stored in base and extent row pa
It excludes contribution from long pages.

• AVGROWLEN

This is the actual average length of rows in the table. This can differ
significantly from the defined row length since SQLBase stores all colum
as variable data regardless of the data type used in the column definition.
that this row length is only the length of the row as stored on base table
extent pages, and therefore excludes all LONG VARCHAR columns.

• AVGROWLONGLEN

This is the actual average length of all LONG VARCHAR columns stored
the table. This column will contain zero if there are no columns of this da
type stored.
Advanced Topics Guide 17-3

Chapter 17 SQLBase Optimizer Implementation

ble.
l
ion”

all

rate
ept
nd

from
he

eld

e
his

as
this
her

Statistics in SYSCOLUMNS
The following statistical information is maintained in these columns of the
SYSADM.SYSCOLUMNS table in the system catalog:

• AVGCOLLEN

This is the actual average length of this column across all rows in the ta
This can differ from the defined column length since SQLBase stores al
columns as variable data. A base row page stores “a long data descript
for every non-NULL long column.

• AVGCOLLONGLEN

This is the actual average length of a LONG VARCHAR column across
rows of the table. This value is zero if this is not a LONG VARCHAR
column.

Index statistics
The statistics associated with indexes on tables are also maintained in two sepa
system catalog tables, as detailed in the following paragraphs. All columns (exc
one, the HEIGHT column in the SYSINDEXES table) are maintained statically, a
are populated when UPDATE STATISTICS is run or the index is initially created.

Statistics in SYSINDEXES
The following statistical information is maintained in these columns of the
SYSADM.SYSINDEXES table in the system catalog:

• HEIGHT

The height of the index tree is the number of nodes that have to be read
the root to the leaf level inclusive. Also, it is called the depth of the tree. T
statistic is also maintained dynamically in the index’s control page. This fi
is null for a hash index.

• LEAFCOUNT

The total number of nodes in the bottom level (leaves) of the index is th
leafcount. Also, it is the number of pages in the index’s sequence set. T
field is null for a hash index.

• CLUSTERCOUNT

The total number of page changes that would occur if the entire table w
read through the index’s sequence set. For a perfectly clustered index,
column is equal to the number of base data pages in the table. At the ot
extreme, the highest value for a totally unclustered index is equal to the
number of rows in the table. This field is null for a hash index.
17-4 Advanced Topics Guide

Database statistics

 for
 slots

r

ject
his
tes.
d to

es in

 a

om
on

ws:
• PRIMPAGECOUNT

The number of primary pages that have been allocated in the base table
the subject table of a hashed index. It is the same as the number of hash
available for distribution of the table’s rows (see Chapter 10, Hashed Indexes,
for more information on the significance of this figure). This field is null fo
a B+Tree index.

• OVFLPAGECOUNT

This is the number of overflow pages that SQLBase allocates for the sub
table of a hashed index. When the table and index are initially created, t
number reflects the number of overflow pages that SQL Base pre-alloca
After that, this number increases as additional overflow pages are require
handle hashing collisions. This field is null for a B+Tree index.

• AVGKEYLEN

For B+Tree indexes, this is the average length of the key across all entri
the index. This number is needed because SQLBase maintains all index
entries as variable length, minimum prefix only fields (see Chapter 9, B-Tree
Indexes, for more information on these index entries). This field is null for
hash index.

Statistics in SYSKEYS
The following statistical information is maintained in this column of the
SYSADM.SYSKEYS table in the system catalog:

• DISTINCTCOUNT

This is the number of distinct keys in the index for that portion of the key fr
the first column up to the COLNO of this entry. If every possible combinati
of values for a composite key exists, this number is the product of each
successive column’s cardinality. Cardinality is the number of distinct values
that a column has in a table. The simplest example is a column called
SEX_CODE, which has a cardinality of two, for the values ‘M’ and ‘F’.
Consider the following index:

CREATE INDEX XNKSALS
ON EMPLOYEE (DEPT,
SALARY,
YEARS_SERVICE);

The employee table contains 250 rows, one for every employee in the
company. Also, the cardinality characteristics of the columns are as follo

• DEPT - There are 10 departments.
Advanced Topics Guide 17-5

Chapter 17 SQLBase Optimizer Implementation

tinct

er of
.

n the

eys
 it
el
rio

his
ople
s.

tes
nted

 is
 a
e

 the
 the
nt
 the

dex
e
• SALARY - No two employees in the company have the exact same
salary; in other words, there are 250 discrete salary values.

• YEARS_SERVICE - The company experienced three distinct hiring
periods, and no one has ever left. Therefore, there are only three dis
values for this column.

Given these conditions, the SysKeys rows which describe these index
columns have the following values for DISTCOUNT:

• DEPT - 10

One for each department in the company.

• SALARY - 250

Since each of the employees has a discrete salary value, the numb
keys at this point in the index equals the number of rows in the table
Alternatively, if there are only five salaries paid by the company, and
each department has someone at each of the five salary levels, the
DISTCOUNT for this column is 50 (10 times 5).

• YEARS_SERVICE - 250

Since the salary field had already raised the cardinality of the index k
to be equal to the number of rows in the table, this field cannot raise
any higher. It is impossible for the number of index entries at any lev
to exceed the number of table rows. However, in the alternate scena
where there are only five salary levels, the value of DISTCOUNT at t
column is 150 (3 times 50), assuming that every department had pe
at each salary level who were hired in each of the three hiring wave

Selectivity factor
The selectivity factor is a statistic which is computed by the optimizer for predica
used by the relational select operator (recall that the select operation is impleme
internally in all SQLBase file access operators). In addition, the selectivity factor
used by the optimizer to determine if an index access path is more efficient than
table scan. Consequently, SQLBase only calculates the selectivity factor for thos
predicates which contain attributes for which an appropriate index exists.

The selectivity factor estimates the number of rows which are returned following
application of the select predicates on a table of known size. This is critical when
optimizer is evaluating an index in an access plan. The index will be more efficie
than a table scan only if the selectivity factor multiplied by the number of rows in
table are less than the number of database pages occupied by the table.

In other words, if most of the table rows have to be retrieved anyway, using the in
only incurs the overhead of reading through the index structure without saving th
17-6 Advanced Topics Guide

Database statistics

ity
ess

o to

e are

 =

tisfy

 The
isfy
ality

rs.

he

ber
t this

.

ws
e of
e, it

hard-
need to read the same number of data pages. Since this is the case, the selectiv
factor appears in virtually every I/O costing formula associated with an index acc
operation that is used by the optimizer.

Numerically, the selectivity factor is a probability, which means it ranges from zer
one. Multiplying the number of rows in a table by the selectivity factor associated
with that table’s predicates will directly yield the number of rows which would
survive the select operation, based on the assumption that the values of the tabl
evenly distributed among its rows.

Single predicates
Determining the selectivity factor of a single predicate, such as EMPLOYEE_NO
65, depends on what operator is used in the predicate. The operator affects the
selectivity factor because it determines the relationship between the rows that sa
the predicate and the other operand.

The more restrictive the operator, the lower the selectivity factor of the predicate.
most restrictive operator is equality (=), since only a single column value can sat
the predicate. In this case, the selectivity factor is simply the inverse of the cardin
of the column, which is stored in the DISTINCTCOUNT column of the
SYSADM.SYSINDEXES table entry for this index’s key.

However, it is not as easy to calculate the selectivity factor for inequality operato
Consider the following two predicates:

ORDER_DATE > JAN-01-1900
ORDER_DATE > SYSDATE - 1 DAY
Obviously, the first predicate could be expected to return many more rows than t
second when applied to the ORDER table. But how can the SQLBase optimizer
determine this? It turns out that the optimizer calculates the selectivity factor by
accessing the upper levels of the index structure which contains the column in
question (in this example, an index on ORDER_DATE). It then estimates the num
of rows that satisfies the predicate by extrapolating the proportion of index keys a
index level. This technique, called the BTree scan, allows the SQLBase optimizer to
make reasonably accurate estimations about the results of inequality predicates

The other factor that plays a role in determining the selectivity factor of a single
inequality predicate is whether the column is compared to a constant or a bind
variable. This is not critical for equality predicates because the optimizer can
calculate the selectivity factor from the DISTINCTCOUNT column with the
assumption of equal value distribution throughout the table. This assumption allo
the optimizer to be insensitive to the actual value of the operand on the other sid
the equality operator. However, for the optimizer to use the BTree scan techniqu
must be able to find a value for the other operand. When the operand is a bind
variable, the optimizer must fall back to making an assumption that is actually a
coded value.
Advanced Topics Guide 17-7

Chapter 17 SQLBase Optimizer Implementation

gle
 used

ow

tivity

lity

’s

ear
The following table summarizes the determination of the selectivity factor of a sin
predicate, depending on the operator and whether a constant or bind variable is
as the other operand. Note that where ‘transformation’ is listed, the predicate is
eliminated from the query through semantic transformation to another form.

Multiple predicates
When multiple predicates are placed on a single table, the SQLBase optimizer
follows some fixed rules when combining their selectivity factors into a total
selectivity factor for the entire relational select operation. The first rule regards h
many predicates are considered when calculating a total selectivity factor for
predicates containing a mix of equality and inequality comparison operators.
SQLBase follows these rules in determining which predicates to evaluate a selec
factor for:

• When the high order columns of the index key are contained within equa
predicates, the optimizer can find the selectivity factor for the multiple
columns by reading the DISTINCTCOUNT column of the lowest order key
SYSKEYS row. When the first inequality predicate is encountered, it is
ignored along with any remaining predicates containing columns that app
in the index. An example of this is:

Predicate Type Operator Constant Operator Not Constant

= 1/cardinality 1/cardinality

!=, <> 1 - 1/cardinality 1/3

> btree scan 1/3

!> btree scan 1/3

< btree scan 1/3

!< btree scan 1/3

>= btree scan 1/3

<= btree scan 1/3

between btree scan 1/3

null treated as a zero length constant not applicable

exists transformation transformation

like btree scan indeterminate

in transformation transformation
17-8 Advanced Topics Guide

Use of statistics by the optimizer

h

r of

ny
ity or

en

at
es

r
tisfy
d,
quired
e for

ch
ay be

 order
, the
EMPLOYEE_NO = 45 AND
DEPT = 50 AND

SALARY > 25000

Assume the index is defined on a composite key consisting of
EMPLOYEE_NO, then DEPT, followed by SALARY. The combined
selectivity factor for both the EMPLOYEE_NO and DEPT columns, whic
appears in the DISTINCTCOUNT column of the DEPT row of the
SYSKEYS catalog table, is used by the optimizer to estimate the numbe
rows that will be returned from the query. The effect of the inequality
predicate on the SALARY column is ignored. For an example of how the
combined DISTINCTCOUNT is calculated for multiple columns, see the
database statistics section earlier in this chapter.

• If the high order column of the index key is the subject of an inequality
predicate, only the selectivity factor of this predicate is evaluated, and a
remaining predicates are ignored (regardless of whether they are inequal
equality predicates). An example of this is:

SALARY > 25000 AND
DEPT = 50 AND
YEARS_SERVICE > 3

Assume the index is defined on a composite key consisting of SALARY, th
DEPT, followed by YEARS_SERVICE. The optimizer determines the
selectivity factor by looking at the root page of the index to determine wh
proportion of table rows have a SALARY > 25000. This proportion becom
the selectivity factor for the entire group of predicates. The DEPT and
YEARS_SERVICE predicates are ignored.

Use of statistics by the optimizer
The first step the SQLBase query optimizer performs in preparing a statement fo
execution is to build a list of candidate access paths that could be executed to sa
the data requirements of the SQL statement. Because the optimizer is cost-base
database statistics are used as the basis for projecting an estimate of the work re
to execute each possible access plan considered by the optimizer as a candidat
possible execution.

After the SQLBase query optimizer builds a group of alternative access plans, ea
plan is assigned an estimated execution cost so that the most inexpensive plan m
chosen for subsequent execution. The two components of query execution cost
evaluated by SQLBase are I/O and CPU cost. These costs are then combined in
to assign the plan an overall cost. Once all alternative plans are assigned a cost
smallest is selected and the remainder are discarded.
Advanced Topics Guide 17-9

ance

Advanced Topics Guide
Chapter 18

Working with the
SQLBase Query
Optimizer

In this chapter we:

• Discuss the specific actions that may be taken in order to improve the
performance of a query which is causing its transaction to fail to meet
response time objectives.

• Specify a seven step procedure that may be applied to tune the perform
of a query in a systematic manner.
Advanced Topics Guide 18-1

Chapter 18 Working with the SQLBase Query Optimizer

.
ate an
eries.
eries
r 7,

nce
h

ng

cific
s:
)

ing
st of
izer,

 and

ance

 all
s that
UP
ides

uery.
t
s the
is
Introduction
Section 1, Database Design, presents a methodology for physical database design
This database design method compares general principles and heuristics to cre
internal schema that exhibits good performance characteristics for most SQL qu
However, the physical design method also acknowledges that some individual qu
may not meet their performance requirements without further tuning (see chapte
Physical Design Control).

A myriad of tuning options faces database designers for increasing the performa
of individual queries. One of the primary ingredients for success is knowing whic
option to use in which situation and when. However, one primary option is worki
with the SQLBase query optimizer to ensure that the correct access paths are
available to the query optimizer. This chapter addresses this issue.

When working with the SQLBase optimizer to increase the performance of a spe
SQL SELECT statement, the database designer performs three distinct activitie
update statistics, determine the optimal index set, and override the query plan(s
chosen by the SQLBase optimizer.

Update statistics
As described earlier in this section, SQLBase maintains several statistics regard
tables and indexes. The query optimizer uses these statistics to calculate the co
various access paths. Therefore, the first aspect of working with the query optim
improving the performance of a given query, is to make sure these statistics are
correct and up-to-date.

Optimal index set
Another aspect of working with the query optimizer involves adding indexes to
increase the speed of restrictions and joins, and to eliminate sorts for GROUP BY
ORDER BY clauses. If a SELECT command is performing poorly, it is probably
either joining, sorting, or reading large tables. Indexes can increase the perform
of all these operations.

As discussed in chapter 6, a common indexing guideline is to create indexes on
primary and foreign keys. This is because in most systems these are the column
appear most frequently in WHERE clause predicates and ORDER BY and GRO
BY clauses. This initial index set (the collection of all indexes in a database) prov
indexes for restrictions and eliminates sorts across primary and foreign keys.
Furthermore, joins are frequently the most time-consuming aspect of a specific q
The fastest join algorithm for large tables is the index merge. The initial index se
ensures that the index merge access path is available to the optimizer as long a
join columns are either primary or foreign keys. For all other joins, the optimizer
18-2 Advanced Topics Guide

Tuning a SELECT statement

to the

nts of

r
he

E
at is

tored

fewest

e a
We
l
e

bles
hould
E
, you
e for

h the
re

res
void
e
limited to the slower join algorithms, the hash join or one of the nested loop
techniques. However, for most SELECT commands, the access paths available
optimizer with the initial index set provide adequate performance.

On the other hand, the initial index set may not meet the performance requireme
all queries. For example, some queries containing join columns that are neither
primary nor foreign keys may perform poorly. For those queries not meeting thei
performance criteria, you must add additional indexes to increase the speed of t
join. However, you do not want to create one or more specific indexes for every
SELECT command performing poorly since:

• Indexes slow update DML commands, specifically all INSERT and DELET
statements, as well as any UPDATE statements that modify a column th
contained within one or more indexes.

• Index management is both time-consuming and costly.

• Indexes take additional disk space.

• Indexes can also cause locking contention because many rows may be s
on a single index node page.

Consequently, the general design goal is to create an index set that contains the
possible indexes which meets the performance requirements of all database
transactions. This is the optimal index set.

Tuning a SELECT statement
This section presents a procedure for working with the SQLBase optimizer to tun
query that is performing poorly. The procedure iterates to the optimal index set.
also assume you are familiar with the protocol described in chapter 7 for physica
design control. The procedure consists of seven discrete steps, each of which ar
described in the following paragraphs.

Step 1: Update statistics
Before adding indexes, verify that the database statistics stored in the system ta
are correct. If you execute the query against an actual production database, you s
update the statistics for all the tables listed in the FROM clause using the UPDAT
STATISTICS command. On the other hand, if you are using a small test database
may have to manually calculate and override the statistics calculated by SQLBas
both the tables listed in the FROM clause and their indexes.

Once you have updated the statistics, you should compile the SQL command wit
PLANONLY parameter set ON. Compare the new query plan to the old plan befo
updating the statistics to determine if the plan has changed. (Sometimes it requi
several minutes or hours to execute a query. By comparing the plans, you can a
executing a query only to find that the performance is identical to the last time th
Advanced Topics Guide 18-3

Chapter 18 Working with the SQLBase Query Optimizer

tive

pile
ery

utely
ms

ary
re:

n
ion

ing

ng

 to
r is
query was executed). If so, execute the query to determine if performance has
improved significantly.

Step 2: Simplify the SELECT command
Before adding indexes or forcing plans, you should simplify the query. The objec
is to make the SQL for the SELECT statement as simple as possible in order to
eliminate as many variables as possible. Once you have simplified the query, com
the SQL command with the PLANONLY parameter set ON. Compare the new qu
plan to the plan before simplifying the command to determine if the plan has
changed. If so, execute the query to determine if performance has improved
significantly.

To simplify the SELECT command:

• Eliminate unnecessary predicates or clauses

• Add parentheses to arithmetic and Boolean expressions

• Convert bind variables to constants

Eliminate unnecessary predicates or clauses
It is common to include more SQL clauses in a SELECT command than is absol
necessary. This is usually done to ensure the correct answer is returned and ste
from a lack of confidence in one’s understanding of the SQL syntax. Before
attempting to tune the query, the database designer should remove all unnecess
clauses and predicates. Clauses which are commonly included but not needed a

• ORDER BY clauses . Frequently, an ORDER BY clause is included eve
though an exact ordering of the result set is not required by the applicat
program or end-user.

• WHERE clause predicates . Frequently, WHERE clauses contain
redundant restriction predicates. For example, the predicates in the follow
WHERE clause are redundant, since DEPT_NO is the primary key, and
therefore will uniquely identify only one row:

WHERE DEPT_NO = 10 AND DEPT_NAME = ‘OPERATIONS’

 Add parentheses to arithmetic and Boolean expressions
The SQLBase SQL language syntax includes a specific precedence for evaluati
arithmetic and Boolean expressions. However, it is easy to make a mistake in
applying the precedence rules. Therefore, we recommend you add parentheses
these expressions to explicitly state the precedence. You may think the optimize
evaluating an expression in one manner when it is actually using another.
18-4 Advanced Topics Guide

Tuning a SELECT statement

. It is
n
 are

eir
ill be

 the
,
e
es the
ty
t the
ould
lues

g

nce
age is
izer

may
s
e
x

on
te

 all

(for
at
Convert bind variables to constants
Bind variables are general place holders used when compiling an SQL command
often desirable to use stored commands to eliminate the overhead of compilatio
when one SQL statement will be executed many times. These stored commands
pre-compiled, and their access plan is saved in the system catalog along with th
source text. Also, programs sometimes issue one prepare for a statement that w
executed many times throughout the program with little modification. In these
situations, bind variables are used to allow the values of some variable tokens in
command to change between executions without having to re-compile. However
when bind variables are used, the query optimizer does not know what values ar
bound to the program variables when the SQL command is executed. This caus
query optimizer to make some gross assumptions when calculating the selectivi
factor. These assumptions may lead to a high selectivity factor which can preven
optimizer from using a specific index. Consequently, when tuning queries, you sh
convert all bind variables to constants so that the query optimizer has specific va
to work with.

For example, when bind variables are used in restriction predicates, the query
optimizer is forced to use a default selectivity factor of 1/3. Consider the followin
predicates:

Amount > :BindVariable
Amount > 1000
The advantage of the first predicate is that the SQL command can be compiled o
and executed many times using many values in the bind variable. The disadvant
the query optimizer has less information available to it at compile time. The optim
does not know whether 10 or 10,000,000 will be bound to the program variable.
Hence, the optimizer is unable to calculate the selectivity factor. Consequently, in
these situations the optimizer simply sets the selectivity factor to a constant that
not reflect the true situation (this constant is currently 1/3 for SQLBase 6.0, but i
subject to change in future releases). Since this 1/3 figure is relatively high (in th
absence of other more restrictive predicates) the optimizer may not use any inde
associated with the column contained in these predicates.

On the other hand, with the second predicate, the optimizer knows the comparis
value at the time of the compile and is therefore able to calculate a more accura
selectivity factor.

Bind variables also cause problems when used in LIKE predicates. The LIKE
operator can include wild card characters. For example, the following query finds
customers whose name begins with the letter A:

select * from customer where name like ‘A%’
The wild card characters can occur in the beginning (for example, '%A'), middle
example, 'A%A'), and terminal positions. The nature of BTree indexes is such th
Advanced Topics Guide 18-5

Chapter 18 Working with the SQLBase Query Optimizer

ild
r
ing

ables
t
ss

,
s to

ou
re:

tions
n

n
ng,
ort.

ot
s are
oins
 join
ve to

If so,

e
these indexes are only helpful in queries involving the LIKE operator when the w
card characters do not occur in the beginning. Therefore, the SQLBase optimize
does not use an index if a LIKE operator is used and a wild card is in the beginn
position.

Furthermore, the SQLBase optimizer also does not use an index when bind vari
are used with the LIKE operator. This is because the optimizer does not know a
runtime where the wild card will occur. Therefore, the optimizer chooses an acce
path (i.e., table scan) which satisfies the query with the wild card in any position
resulting in significantly decreased performance. Hence, convert all bind variable
constants in LIKE predicates.

Step 3: Review the query plan
Execute the query with the PLANONLY parameter ON to display the query plan
which the optimizer has chosen. Familiarize yourself with the query plan since y
must understand the plan in order to use it. Several items to especially look for a

• Conversion of subqueries to joins : The optimizer converts most
subqueries to joins. Make sure you understand where these transforma
are taking place; you need to know where these transformations occur i
some of the following steps.

• Temporary tables being created : If a temporary table is created, this ca
indicate that the optimizer is sorting intermediate results. If this is occurri
you may want to add an index in one of the following steps to avoid the s

• Slower join techniques : The hash join and nested loop techniques are n
as fast as the index merge technique for large tables. If these technique
being used, you may want to add indexes in steps 5 or 6 so that these j
use the index merge technique. Of course, for some situations the hash
may represent the best possible method when large amounts of data ha
be processed.

Step 4: Locate the bottleneck
The query which is performing poorly can contain many clauses and predicates.
you must determine which clauses or predicates are resulting in the poor
performance. Generally if you remove one or two clauses or predicates, query
performance improves significantly. These clauses are the “bottleneck.”

Experiment with the query; iteratively remove (comment out) clauses and/or
predicates until the query exhibits substantially superior performance. Locate th
bottleneck clauses and predicates. For example:
18-6 Advanced Topics Guide

Tuning a SELECT statement

e
rmine

st to
ry.

at an
dex

re the

ce

e the
lti-

ied
 the

this

this

 table
es

ry
• If the query contains an ORDER BY clause, comment it out and see if th
query plan changes. If the query plan changes, execute the query to dete
if performance improves significantly.

• If the query contains several joins, locate the one that is taking the longe
perform. Successively comment out all but one join and execute the que
Determine if one join is the bottleneck.

• Eliminate any AT (@) functions (such as @UPPER) being performed on
WHERE clause predicates and see if performance increases. It may be th
index is not being used because of a @function. If this is the case, the in
may be altered to contain the function if the query and function are
sufficiently critical. Of course, this alternative may then make the index
unusable for other queries whose performance had been acceptable befo
modification.

Step 5: Create single column indexes for the bottlenecks
If you complete steps 1 through 4 and the query is still not meeting its performan
requirements, you must create indexes specifically for the query to increase
performance. In general, single column indexes are preferable to multi-column
indexes because they are more likely to be useful to other queries. Try to increas
performance of the query with single column indexes first before resorting to mu
column indexes.

Locate the following table columns used in the query which do not have an index
(either a single attribute index or a right-hand subset of a multi-column index):

• Join columns : This includes subqueries that the optimizer converts to
joins. If the primary key of the table is a composite key, the join is specif
across multiple columns and a multi-column index is needed to increase
performance of this join. This index should already exist.

• GROUP BY columns : If the GROUP BY clause contains more than one
column, a multi-column index is needed to increase the performance of
GROUP BY clause. Skip these columns until step 6.

• ORDER BY columns : If the ORDER BY clause contains more than one
column, a multi-column index is needed to increase the performance of
ORDER BY clause. Skip these columns until step 6.

• Low cost restrictions : These are the table columns referenced in the
WHERE clause restriction predicate with the lowest selectivity factor for
each table reference in the FROM clause.

Compare these table columns to the bottlenecks discovered in step 4. One of the
columns identified above should match one of the bottleneck clauses or predicat
identified in step 4. If so, create a single column index on one of these columns.
Determine if the addition of this index changes the query plan by running the que
Advanced Topics Guide 18-7

Chapter 18 Working with the SQLBase Query Optimizer

ndex
ns
ding

n

ine if

exes

sted
rder

sted
rder

the

E
te a
n

in

with the PLANONLY parameter ON. If it does, execute the query to determine if
adding this index significantly increases the performance of the query.

If adding the index does not increase performance significantly, create another i
on another table column identified above. Continue until you have tried all colum
identified above. If you are unable to increase the performance of the query by ad
a single column index, proceed to the next step.

Step 6: Create multi-column indexes
As a last resort, you may have to create one or more multi-column indexes
specifically for this query to achieve the desired performance. The procedure for
doing so is identical to the one described in the previous section for single colum
indexes:

1. Create a multi-column index.

2. Determine if the query plan changes. If it does, execute the query to determ
performance increases.

3. If performance does not improve, create another index. Continue creating ind
until all possible multi-column indexes have been created.

The types of multi-column indexes to create are listed below:

• Multi-column GROUP BY clause : If the query has a GROUP BY clause
containing more than one column, create an index on all of the columns li
in the GROUP BY clause. Be sure to specify the columns in the same o
as listed in the GROUP BY clause.

• Multi-column ORDER BY clause : If the query has an ORDER BY clause
containing more than one column, create an index on all of the columns li
in the ORDER BY clause. Be sure to specify the columns in the same o
as listed in the ORDER BY clause. Also, be sure to specify the same
sequencing (ascending or descending) for each column as specified in
ORDER BY clause.

• Join column(s) plus the low cost restriction : For each table listed in
the FROM clause that has at least one restriction specified in the WHER
clause (in descending order from the largest table to the smallest), crea
multi-column index on the join column(s) and the column in the restrictio
predicate with the lowest selectivity factor.

• Join column(s) plus all restrictions: For each table listed in the FROM
clause that has at least one restriction specified in the WHERE clause (
descending order from the largest table to the smallest), create a multi-
column index on the join column(s) and all columns included in any
restrictions involving that table. The order of the columns in the index is
critical to whether the index will be selected for use by the optimizer. In
18-8 Advanced Topics Guide

Tuning a SELECT statement

l

s.

ds
p
t used
general, list equality columns before other columns, and list all equality
predicate columns in increasing selectivity factor order. After listing all
equality predicates in the CREATE INDEX statement, list the inequality
predicate which has the lowest selectivity factor as the last column in the
index. Any other inequality predicates present in the WHERE clause wil
probably not benefit the performance of the statement, nor will they be
considered by the SQLBase query optimizer when selecting access path

Step 7: Drop all indexes not used by the query plan
As discussed in the previous section, indexes slow down UPDATE DML comman
and index management is time-consuming and costly. Therefore, you should kee
track of the indexes created during steps 5 and 6 and drop all indexes that are no
by the query.
Advanced Topics Guide 18-9

Index Advanced Topics Guide
A
abbreviations 2-3
access path selection 8-2
access plans 16-2

matching index scan 16-10
non-matching index scan 16-10
physical operators 16-2, 16-9
relational join 16-11
relational operations 16-4

aggregate query 12-6
aggregation

data 7-11
purpose 16-9
scalar 16-9

ALTER TABLE 3-9, 6-6
ANSI/SPARC

conceptual schema 1-2, 2-1, 4-2–4-3, 7-2
external schema 1-2, 1-4, 1-5, 4-4–4-5, 5-7, 7-2

views as 4-2, 4-4
internal schema 1-2, 1-5, 1-6, 3-2, 3-5, 5-7, 6-1,

7-2
three schema architecture 1-2–1-6, 4-2, 6-1, 7-2

attributes
aggregate data 7-9
derived data 7-9

authorization-id 3-3

B
B+tree

index-only access 16-14
index-only access with project operator 16-14
sequence set 16-10

B+Tree index, compared to hashed index 10-2
Bachman diagram 2-6, 2-7
BACKUP SNAPSHOT 14-7
binary search tree

balanced 9-4, 9-6
branching factor 9-3
key value 9-3
node key 9-3
pointer 9-3
short version for indexes 9-3
target key 9-3, 9-4, 9-8
unbalanced 9-6

bind variables 18-5
blocking factor 6-4

Boolean operators 16-5
brute force method 7-3–7-4
B-tree 18-5

general purpose indexing 9-2
index structures 9-3
leaf node 9-4, 9-5, 9-6, 9-7, 9-8, 9-9, 9-12, 9-13
root page 17-9
scan 17-7

bucket size 10-7

C
cache 14-11–14-13

dirty cache buffers 14-5
dirty cache pages 14-11
used in join operation 16-12

Cache Manager 14-11
cardinality 2-7–2-10, 7-12, 17-5

column 6-11
low 6-16
maximum 2-7, 2-8, 3-6
minimum 2-7, 2-8

Cartesian product 15-4, 16-4
CASE tool 3-2, 5-3
CHAR 3-4, 6-4
Chen diagram 2-6, 2-10
child table 3-2, 3-5, 3-8, 3-9, 6-6, 6-9
clustered hashed index 10-2
columns, adding 3-3
COMMIT 13-2
conjunctive form of multiple predicates 16-17
conventions xvii
conversion of subqueries 18-6
correlation variables 16-6, 16-8
CREATE 6-7
CREATE CLUSTERED HASHED INDEX, effect on

packing density 10-13
CREATE INDEX 6-9, 6-14
CREATE TABLE 6-9, 6-13, 6-18
CREATE UNIQUE INDEX 3-9, 6-9, 6-13–6-14
cursor context preservation(CCP)

effect on result set flushing 12-8
rules for releasing locks 13-8

Cursor Stability (CS), drawback 13-11

D
data administration 2-2, 2-4, 2-5
Advanced Topics Guide Index-1

data control language (DCL) 4-4
data definition language (DDL) 3-2, 3-9
data dictionary 2-4
data element 2-3
data integrity 5-2
data pages

page 8-2
page buffers 7-4
page size 6-3

data pages, SQLBase types
extent page 8-3, 8-4
LONG VARCHAR 8-3, 8-4
overflow 8-3, 8-4
row pages 8-3, 8-4

data typing columns 3-3
database

administration 2-2
design based on subject 2-5
locking example 13-4
partitioning 6-16
standardizing names 2-4
transaction 7-6

database manipulation language (DML) 7-5
limitations 4-2

DATE 3-4
DATETIME 3-4
deadlock avoidance 13-11
decision support systems 5-4
decoupling programs from data, benefits of 15-3
DEINSTALL 14-3
denormalization 2-18, 7-4, 7-7–7-9, 7-11

techniques 6-2
dependency on data structure 15-2
dependency rule 3-5
diagrammatic symbols 2-6
dimension 2-11
direct random access 6-7
disk access operations 16-10
disk controller cache 7-4
DML, see data manipulation language
domains 2-6, 2-11, 3-3

E
E.F. Codd 2-11, 16-3
enterprise-wide data model 2-4, 2-5
entities, major 2-6
entity relationship diagram (ERD) 2-5, 2-6, 3-2–3-5,

3-6, 3-8, 5-2, 7-2

domain specification 3-2
equality predicate 6-12
equijoin 16-7
explain plan facility 7-5
exponent-mantissa format 3-4
extent page 8-7
extents 10-11

F
FETCHTHROUGH 12-12–12-13
file

buffer 8-2
file names 2-3
FOR UPDATE OF 13-5
forecast

method 7-3, 7-4
model 7-4–7-5

foreign key column 16-7
free space 6-10, 6-17

calculating 6-18
FROM 16-6
fuzzy checkpointing 14-12–14-13

G
GROUP BY 16-8, 16-9

H
hash

access to disk 16-11
hashed table 7-7

hash algorithm, eliminating bias 10-3, 10-4
example 10-4

hash bucket calculation 10-14
hash function 6-7
hash function, SQLBase pre-programmed 10-11
hash key selection 10-6
hashed table 16-11
hashed tables

when not to use 10-3
hashing performance analysis 10-8
history file 13-13

I
incremental lock(U-Lock) 13-5
index

B+ trees 6-7
candidates 6-12

good 6-14
Index-2 Advanced Topics Guide

poor 6-12, 6-15–6-16
clustered hashed 6-4, 6-7–6-9, 6-10, 7-7
composite index 6-12, 6-16
index only access 6-12–6-13
key 6-11, 6-15

index locking 13-8
index set 18-2
index, effect on performance 13-9
Information Engineering diagram 2-6
inner table 16-11
INSERT 6-6, 6-10
INSERT, locks used in process 13-8
insertion algorithm 9-7
INTEGER 3-4
intermediate nodes 9-5
intersection 16-3
isolation mode

changing during transaction 13-10
criteria for choosing 13-14
design trade-offs 13-13

isolation mode, effect on lock duration 12-10

J
join 3-4, 4-2, 16-4, 16-6–16-8

examples 16-6
hash 16-13
index merge 16-13
loop join with index 16-12
loop with hash index 16-12
merge join 15-6
nested loop join 15-5
outer table 16-11
outerjoin 16-7
selfjoin 16-8
semijoin 16-7
simple loop join 16-12
techniques 18-6

junction
data 2-10, 3-8
table 3-2, 3-7, 3-8

K
key

composite 2-11, 3-7
concatenated 2-11, 2-12
foreign 2-11, 2-13, 3-2, 3-5, 3-8, 6-5–6-6, 6-8–6-

10, 6-14, 7-8
clustering 6-8

primary 2-5, 2-11, 2-11–2-13, 3-2, 3-5, 3-7–3-9,
6-2–6-6, 6-7, 6-9–6-11, 6-13–6-15

primary index 6-6
key columns 16-7
keys

skewness of 6-15

L
LIKE 18-5
linked lists 8-3
log

active 14-5
archive 14-5
LOGBACKUP 14-5–14-7
manager 14-7
pinned 14-6
RELEASE LOG 14-7
SET NEXTLOG 14-7

log file 13-3
logical data modeling 2-6, 2-13, 5-2
logical data structures 5-2
logical database design process 1-5
logical file

address 8-2
offset 8-2

LONG VARCHAR 3-4
lost updates, causes 13-5

M
metadata 2-4
multiversion concurrency control 13-13

N
naming standards 2-2, 2-4
non-participating rows 16-7
normal form 2-14, 2-18
normalization 2-6, 2-12, 2-13, 4-2
NOT NULL 3-5
NOT NULL WITH DEFAULT 3-5
notation conventions xvii
null usage 3-4

O
objects

conceptual 4-2
owners 4-2
physical 4-2

online transaction processing 5-3
Advanced Topics Guide Index-3

optimizer 6-7, 6-12, 7-3, 7-5–7-6, 7-13
cost-based 16-2

overflow page 10-11

P
packing density 10-7

70% rule-of-thumb 10-8
page clustering 6-4
page number

logical 8-4
physical 8-2, 8-4, 8-7, 8-11

page size
DOS,Windows 11-3
SQLBase 8-2, 8-7

page types
control 8-3
data 8-3
index 8-3

parent 6-6, 6-9, 6-14
parent table 3-5, 3-6–3-8
partition and merge algorithm 16-9
partnership set 2-8
PCTFREE 6-18–6-19
performance requirements tailoring 6-5
physical block reads 7-4
physical block writes 7-4
physical database

dependencies 4-2
design 5-2, 5-4–5-6, 7-2
schema 4-2

physical design control 7-2–7-4, 7-6
physical schema 7-3, 7-6
PLANONLY 18-6
predicate 16-5

conjunctive, disjunctive 16-5
multiple 17-8
short-circuit testing 16-14, 16-18

primary key 4-3
primary key index 4-3
primary table 7-8
prime attributes 7-11
printer names 2-4
probe phase 16-13
program names 2-3
projection 16-4, 16-5, 16-14

Q
query

 execution cost 17-9
query plan, see access plans

query tree 16-15–16-16

R
random reads 8-2
read locks(S-Locks) 13-5
Read Only (RO) 13-12
REAL 3-4
Recovery Manager 14-2
referential integrity 2-11, 3-2, 3-8–3-10, 4-3, 6-5, 6-

14–6-15
CASCADE 3-9, 6-6
constraints 6-5–6-6
RESTRICT 3-9
SET NULL 3-5, 3-9

regular node 9-5
relational algebra 16-3
relational view 4-2
relationship 2-6

information bearing 2-10
many-to-many 3-2, 3-6
one-to-many 2-13, 3-6–3-8
one-to-one 2-13, 5-3, 6-5
resolving 2-10, 3-6

Release Locks(RS), example 13-12
reorganization frequency 6-18
Repeatable Read (RR) 13-11
repository 2-4
result sets

derived 12-7
implications for transactions 12-9

ROLLBACK 13-2, 14-2, 14-6
ROLLFORWARD 14-4
row clustering 7-6
row serial number 8-6–8-7, 8-18
row size 6-3–6-4
ROWID 12-2–12-7, 12-11–12-12
rowid 8-7
rows per page 6-4

S
secondary table 7-8
security administration 4-3–4-4
security authorizations 2-3
SELECT 6-7, 6-11–6-13, 6-15, 16-4, 18-4

criteria 7-7, 7-11
description 16-14
Index-4 Advanced Topics Guide

examples 16-5
selectivity factor 6-11–6-12, 6-16, 7-12, 16-14, 17-6,

18-5
for inequality operators 17-7
total 17-8

semantic validation 2-11
sequencing node properties 9-5
sequential reads 8-2
server names 2-4
set operations 16-3
slot

byte offset 8-6
row header 8-5
table 8-4–8-9

SMALLINT 3-4
sort key 16-9
splitting tables 6-2–6-6

horizontal splitting 6-2, 6-4
vertical splitting 6-2

SQLBase catalog 16-2
sqlexp function 7-6
SQLPPCX flag 13-8
standardized templates 2-3
static data 7-7
statistics

AVGCOLLEN 17-4
AVGCOLLONGLEN 17-4
AVGKEYLEN 17-5
AVGROWLEN 17-3
AVGROWLONGLEN 17-3
CLUSTERCOUNT 17-4
DISTCOUNT 17-5
DISTINCTCOUNT 17-7
HEIGHT 17-4
LEAFCOUNT 17-4
LONGPAGECOUNT 17-3
OVFLPAGECOUNT 17-5
PAGECOUNT 17-3
PRIMPAGECOUNT 17-5
ROWCOUNT 17-3
ROWPAGECOUNT 17-3
UPDATE STATISTICS 7-6, 17-2, 17-4, 18-3
user modifiable 17-2

strategic data plan 2-4, 2-6
strategic management 2-4
system catalog tables 17-2

SYSADM.SYSCOLUMNS 17-4
SYSADM.SYSINDEXES 17-4

SYSADM.SYSKEYS 17-5
SYSADM.SYSTABLES 17-3

system development 2-2

T
table names 2-3
table scan 8-2, 16-10
table size calculation

hashed 11-6
regular 11-6

temporary table 12-6, 18-6
TIME 3-4
TIMESTAMP 3-4
transaction

batch 5-4
complexity 5-4, 5-5
data manipulation language (DML) 1-4
database 5-2
defining 5-2, 5-3
definitions 5-2–5-6
description 5-3
high complexity 5-4, 5-5
low complexity 5-4, 5-5
medium complexity 5-5
name 5-3
number 5-3
online 5-4
performance 5-2, 6-4
performance requirements 5-5
relative priority 5-5
secondary effects example 13-4
SQL statements 5-6
type 5-4
volumes 5-4

transformation rules 15-5
tree

multiway 9-2, 9-4
tuning the schema 7-6

U
uncommitted data

dependency problem 13-5
effect on other transactions 13-3

union 16-3
update serial number 8-5–8-7
user names 2-3
Advanced Topics Guide Index-5

V
VARCHAR 3-4, 6-4–6-5
view administration 1-5
view names 2-3
virtual table 12-7

W
WHERE 6-7, 6-8, 6-12–6-13, 16-6
workstation names 2-4
write locks(X-Locks) 13-5
Index-6 Advanced Topics Guide

	SQLBase Advanced Topics Guide
	Foreword
	About the Authors

	Contents
	Preface
	Audience
	What is in this manual
	Notation conventions
	Other helpful resources
	Send comments to...

	Chapter 1: Introduction
	ANSI/SPARC three schema architecture
	Structure of this section

	Chapter 2: Conceptual Schema Creation
	Data administration
	Standards creation and enforcement
	Data dictionary
	Enterprise-wide data planning
	Subject area databases

	Logical data modeling
	Entities and relationships
	Attributes and domains
	Primary and foreign keys

	Normalization
	Normal forms
	Denormalization

	Chapter 3: Internal Schema Creation
	Building the initial internal schema
	Creating tables
	Adding columns to tables
	Data typing for columns
	Null usage
	Example 1

	Resolving many-to-many relationships
	Adding referential integrity
	Defining keys
	Example 2

	Chapter 4: External Schema Creation
	Using views as the external schema
	Creating the initial external schema
	Example

	Chapter 5: Transaction Definition
	Benefits of defining transactions
	Physical database design
	Data integrity

	Defining transactions
	Transaction name, number, and description
	Transaction type and complexity
	Transaction volumes
	Transaction performance requirements
	Relative priority
	Transaction SQL statements

	Chapter 6: Refining the Physical Design
	Introduction
	Splitting tables
	Vertically splitting large rows
	Horizontally splitting tables
	Tailoring performance requirements
	Referential integrity considerations

	Clustering of table rows
	Direct random access of rows
	Clustering rows together

	Indexing
	Column cardinality and selectivity factor
	Composite indexes
	Good index candidates
	Poor index candidates

	Database partitioning
	Free space calculations

	Chapter 7: Physical Design Control
	Introduction
	The process
	Step one
	Step two

	Chapter 8: Database Pages
	Pages and page types
	Data pages
	Row pages
	Extent pages
	Long varchar pages
	Overflow pages

	Index pages
	Control pages
	Database control block
	Free extent list
	Group free page list
	Group extent map
	Bitmap pages
	Row count page
	Table data page

	Page allocation and garbage collection
	Page allocation
	Garbage collection

	Chapter 9: B-Tree Indexes
	Introduction
	Binary search trees
	Multiway trees
	B-Trees
	The order of a B-Tree
	Sequencing within a node
	Balancing B-Trees
	B-Tree operation costs

	B+-Trees
	Prefix B+-Trees
	SQLBase implementation
	Index node size
	Performance considerations
	Non-unique indexes

	Chapter 10: Hashed Indexes
	Hash table overview
	Row location in hashed tables
	Performance benefits of hashed tables
	Potential pitfalls of hashing

	Hashing theory
	The hash function
	Bucket hashing
	Collisions and overflows
	Collision avoidance techniques
	Hashing disk space utilization and performance

	SQLBase hashing implementation
	Location of table rows
	Hash function
	Specifying the packing density

	Chapter 11: Estimating Database Size
	Introduction
	Spreadsheet usage

	Formulas for estimating database size
	Calculation of column width
	Table size calculations
	BTree Index size calculations
	Estimation of overhead for views
	Fixed amount of overhead

	Example of size estimation

	Chapter 12: Result Sets
	Introduction
	Characteristics of result sets
	Physical structure of result sets
	Logical contents of result sets
	Population of result sets
	Flushing of result sets

	Processing result sets
	Lock duration on result set rows
	Concurrency and derived result sets
	Concurrency and non-derived result sets

	Chapter 13: Concurrency Control
	Introduction
	Transaction serialization
	Lock types and scope
	S-locks
	X-locks
	U-locks
	Lock compatibilities
	Locking level
	Locking scope
	Lock implementation

	Isolation levels
	Using isolation levels effectively
	Selecting isolation levels

	Chapter 14: Logging and Recovery
	Introduction
	Failure types
	Transaction failures
	System failures
	Media failures

	Recovery mechanisms
	The log file
	Backup and recovery

	Chapter 15: Introduction to Query Optimization
	Data access languages
	Procedural data access languages
	Declarative data access languages

	Query optimization
	Syntax optimization
	Rule-based optimization
	Cost-based optimization
	Query optimization steps

	Chapter 16: Overview of the SQLBase Query Optimizer
	Introduction
	Relational operations
	Projection
	Selection
	Join
	Aggregation

	SQLBase physical operators
	Sort
	Aggregation
	Disk access operation
	Join operations
	Imbedded operators

	Query plan structure
	Query trees
	Building query trees
	Predicate logic conversion

	Chapter 17: SQLBase Optimizer Implementation
	Database statistics
	Table statistics
	Index statistics
	Selectivity factor

	Use of statistics by the optimizer

	Chapter 18: Working with the SQLBase Query Optimizer
	Introduction
	Update statistics
	Optimal index set

	Tuning a SELECT statement
	Step 1: Update statistics
	Step 2: Simplify the SELECT command
	Step 3: Review the query plan
	Step 4: Locate the bottleneck
	Step 5: Create single column indexes for the bottl...
	Step 6: Create multi-column indexes
	Step 7: Drop all indexes not used by the query pla...

	Index

